Progress in Artificial Intelligence

, Volume 6, Issue 1, pp 27–39 | Cite as

A hybrid dynamic programming for solving a mixed-model sequencing problem with production mix restriction and free interruptions

  • Joaquín Bautista
  • Alberto Cano
  • Rocío Alfaro-Pozo
Regular Paper


In this article, we propose a hybrid procedure based on bounded dynamic programming assisted by linear programming to solve the mixed-model sequencing problem with workload minimization with serial workstations, free interruption of the operations and with production mix restrictions. We performed a computational experiment with 23 instances related to a case study of the Nissan powertrain plant located in Barcelona. The results of our proposal are compared with those obtained by mixed integer linear programming.


Mixed-model sequencing Dynamic programming Mixed integer linear programming Hybrid metaheuristics Industrial application 



This work was funded by the Ministerio de Economía y Competitividad (Spanish Government) through the FHI-SELM2 (TIN2014-57497-P) project.


  1. 1.
    Miltenburg, J.: Scheduling mixed-model assembly lines for just-in-time production systems. Manag. Sci. 35(2), 192–207 (1989)CrossRefzbMATHGoogle Scholar
  2. 2.
    Monden, Y.: Toyota Production System—An Integrated Approach to Just-In-Time. Springer, US (1994)Google Scholar
  3. 3.
    Yano, C.A., Rachamadugu, R.: Sequencing to minimize work overload in assembly lines with product options. Manag. Sci. 37(5), 572–586 (1991)CrossRefGoogle Scholar
  4. 4.
    Bautista, J., Alfaro, R., Batalla, C.: Modeling and solving the mixed-model sequencing problem to improve productivity. Int. J. Prod. Econ. 161, 83–95 (2015)CrossRefGoogle Scholar
  5. 5.
    Parrello, B.D., Kabat, W.C., Wos, L.: Job-shop scheduling using automated reasoning: a case study of the car-sequencing problem. J. Autom. Reas. 2(1), 1–42 (1986)MathSciNetGoogle Scholar
  6. 6.
    Golle, U., Rothlauf, F., Boysen, N.: Iterative beam search for car sequencing. Ann. Oper. Res. 226(1), 239–254 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Morin, S., Gagné, C., Gravel, M.: Ant colony optimization with a specialized pheromone trail for the car-sequencing problem. Eur. J. Oper. Res. 197(3), 1185–1191 (2009)CrossRefGoogle Scholar
  8. 8.
    Bautista, J., Pereira, J., Adenso-Díaz, B.: A beam search approach for the optimization version of the car sequencing problem. Ann. Oper. Res. 159(1), 233–244 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bautista, J., Pereira, J., Adenso-Díaz, B.: A GRASP approach for the extended car sequencing problem. J. Schedul. 11(1), 3–16 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Drexl, A., Kimms, A., Matthießen, L.: Algorithms for the car sequencing and the level scheduling problem. J. Schedul. 9(2), 153–176 (2006)CrossRefzbMATHGoogle Scholar
  11. 11.
    Fattahi, P., Salehi, M.: Sequencing the mixed-model assembly line to minimize the total utility and idle costs with variable launching interval. Int. J. Adv. Manuf. Technol. 45(9–10), 987–998 (2009)Google Scholar
  12. 12.
    Tsai, L.H.: Mixed-model sequencing to minimize utility work and the risk of conveyor stoppage. Manag. Sci. 41(3), 485–495 (1995)CrossRefzbMATHGoogle Scholar
  13. 13.
    Bautista, J., Cano, A., Alfaro, R.: Modeling and solving a variant of the mixed-model sequencing problem with work overload minimisation and regularity constraints. An application in Nissan’s Barcelona Plant. Exp. Syst. Appl. 39(12), 11001–11010 (2012)CrossRefGoogle Scholar
  14. 14.
    Manavizadeh, N., Tavakoli, L., Rabbani, M., Jolai, F.: A multi-objective mixed-model assembly line sequencing problem in order to minimize total costs in a Make-To-Order environment, considering order priority. J. Manuf. Syst. 39(1), 124–137 (2013)CrossRefGoogle Scholar
  15. 15.
    Boysen, N., Fliedner, M., Scholl, A.: Sequencing mixed-model assembly lines: survey, classification and model critique. Eur. J. Oper. Res. 192(2), 349–373 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bolat, A.: A mathematical model for sequencing mixed models with due dates. Int. J. Prod. Res. 41(5), 897–918 (2003)CrossRefzbMATHGoogle Scholar
  17. 17.
    Bautista, J., Cano, A.: Solving mixed model sequencing problem in assembly lines with serial workstations with work overload minimisation and interruption rules. Eur. J. Oper. Res. 210(3), 495–513 (2011)CrossRefzbMATHGoogle Scholar
  18. 18.
    Bautista, J., Cano, A., Alfaro, R.: Modeling and solving a variant of MMSP-W problem with production mix restrictions. In: Prado-Prado, J.C., García-Arca, J. (eds.) Annals of Industrial Engineering 2012. Springer, London (2014). doi: 10.1007/978-1-4471-5349-8_28
  19. 19.
    Bautista, J., Cano, J.: Minimizing work overload in mixed-model assembly lines. Int. J. Prod. Econ. 112(1), 177–191 (2008)CrossRefGoogle Scholar
  20. 20.
    Bolat, A., Yano, C.A.: Scheduling algorithms to minimize utility work at a single station on paced assembly line. Prod. Plann. Contr. 3(4), 393–405 (1992)CrossRefGoogle Scholar
  21. 21.
    Scholl, A., Klein, R., Domschke, W.: Pattern based vocabulary building for effectively sequencing mixed-model assembly lines. J. Heurist. 4(4), 359–381 (1998)CrossRefzbMATHGoogle Scholar
  22. 22.
    Erel, E., Gocgun, Y., Sabuncuoglu, I.: Mixed-model assembly line sequencing using beam search. Int. J. Prod. Res. 45(22), 5265–5284 (2007)CrossRefzbMATHGoogle Scholar
  23. 23.
    Aigbedo, H., Monden, Y.: A parametric procedure for multcriterion sequence scheduling for just-in-time mixed-model assembly lines. Int. J. Prod. Res. 35(9), 2543–2564 (1997)CrossRefzbMATHGoogle Scholar
  24. 24.
    Kotani, S., Ito, T., Ohno, K.: Sequencing problem for a mixed-model assembly line in the Toyota production system. Int. J. Prod. Res. 42(23), 4955–4974 (2004)CrossRefzbMATHGoogle Scholar
  25. 25.
    Ding, F.Y., Zhu, J., Sun, H.: Comparing two weighted approaches for sequencing mixed-model assembly lines with multiple objectives. Int. J. Prod. Econ. 102(1), 108–131 (2006)CrossRefGoogle Scholar
  26. 26.
    Rahimi-Vahed, A., Mirzaei, A.H.: A hybrid multi-objective shuffled frog-leaping algorithms for a mixed-model assembly line sequencing problem. Comput. Ind. Eng. 53(4), 642–666 (2007)CrossRefGoogle Scholar
  27. 27.
    Bautista, J., Companys, R., Corominas, A.: Heuristics and exact algorithms for solving the Monden problem. Eur. J. Oper. Res. 88(1), 101–113 (1996)CrossRefzbMATHGoogle Scholar
  28. 28.
    Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combinatorial optimization: a survey. Appl. Soft Comput. J. 11(6), 4135–4151 (2011)CrossRefzbMATHGoogle Scholar
  29. 29.
    Bautista, J., Cano, A., Alfaro, R., Batalla, C.: Impact of the production mix preservation on the orv problem. In: Bielza, C., et al. (eds.) CAEPIA 2013, LNAI 8109, pp. 250–259 (2013). Springer, Berlin. doi: 10.1007/978-3-642-40643-0_26
  30. 30.
    Blum, C.: Beam-ACO-hybridizing ant colony optimization with beam search: an application to open shop scheduling. Comput. Oper. Res. 32(6), 1565–1591 (2005)Google Scholar
  31. 31.
    Bautista, J., Alfaro-Pozo, R., Batalla-García, C.: GRASP for sequencing mixed models in an assembly line with work overload, useless time and production regularity. Progr. Artif. Intell. 5(1), 27–33 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Research Group OPE-PROTHIUSUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations