Progress in Artificial Intelligence

, Volume 5, Issue 3, pp 215–220 | Cite as

The role of non-intrusive approaches in the development of people-aware systems

  • Paulo NovaisEmail author
  • Davide Carneiro
Regular Paper


There is currently a significant interest in consumer electronics in applications and devices that monitor and improve the user’s well-being. This is one of the key aspects in the development of ambient intelligence systems. Nonetheless, existing approaches are generally based on physiological sensors, which are intrusive and cannot be realistically used, especially in ambient intelligence in which the transparency, pervasiveness and sensitivity are paramount. We put forward a new approach to the problem in which user behavioral cues are used as an input to assess inner state. This innovative approach has been validated by research in the last years and has characteristics that may enable the development of true unobtrusive, pervasive and sensitive ambient intelligent systems.


Ambient intelligence Behavioral analysis Human–computer interaction Stress 



This work has been supported by FCT -Fundação para a Ciência e Tecnologia within the Project Scope UID/CEC/00319/2013. The work of Davide Carneiro is supported by a Doctoral Grant by FCT (SFRH/BPD/ 109070/2015).


  1. 1.
    Ackroyd, S.: Data Collection in Context. Longman Group, UK (1992)Google Scholar
  2. 2.
    Ahmed, A.A.E., Traore, I.: Detecting computer intrusions using behavioral biometrics. In: PST, Citeseer (2005)Google Scholar
  3. 3.
    Barreto, A., Zhai, J., Adjouadi, M.: Non-intrusive physiological monitoring for automated stress detection in human–computer interaction. In: Lew M, Sebe N, Huang TS, Bakker EM (eds) Human–Computer Interaction, pp. 29–38. Springer, Berlin (2007)Google Scholar
  4. 4.
    Bauer, G., Lukowicz, P.: Can smartphones detect stress-related changes in the behaviour of individuals? In: 2012 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), IEEE, pp. 423–426 (2012)Google Scholar
  5. 5.
    Brey, P.: Freedom and privacy in ambient intelligence. Ethics Inform. Technol. 7(3), 157–166 (2005)CrossRefGoogle Scholar
  6. 6.
    Brüser, C., Stadlthanner, K., De Waele, S., Leonhardt, S.: Adaptive beat-to-beat heart rate estimation in ballistocardiograms. IEEE Trans. Inform. Technol. Biomed. 15(5), 778–786 (2011)CrossRefGoogle Scholar
  7. 7.
    Carneiro, D., Novais, P.: New applications of ambient intelligence. In: Ramos C, Novais P, Nihan CE, Corchado Rodríguez JM (eds) Ambient Intelligence-Software and Applications, pp. 225–232. Springer, Berlin (2014)Google Scholar
  8. 8.
    Carneiro, D., Costa, R., Novais, P., Neves, J., Machado, J., Neves, J.: Simulating and monitoring ambient assisted living. In: Proceedings of the ESM, pp. 175–182 (2008)Google Scholar
  9. 9.
    Carneiro, D., Gomes, M., Novais, P., Neves, J.: Developing dynamic conflict resolution models based on the interpretation of personal conflict styles. In: Antunes L, Pinto HS (eds) Progress in Artificial Intelligence, pp. 44–58. Springer, Berlin (2011)Google Scholar
  10. 10.
    Carneiro, D., Castillo, J.C., Novais, P., Fernández-Caballero, A., Neves, J.: Multimodal behavioral analysis for non-invasive stress detection. Expert Syst. Appl. 39(18), 13,376–13,389 (2012a)CrossRefGoogle Scholar
  11. 11.
    Carneiro, D., Montotya, J.C.C., Novais, P., Fernández-Caballero, A., Neves, J., Bonal, M.T.L.: Stress monitoring in conflict resolution situations. In: Novais P, Hallenborg K, Tapia DI, Corchado Rodríguez JM (eds) Ambient Intelligence-Software and Applications, pp. 137–144. Springer, Berlin (2012b)Google Scholar
  12. 12.
    Castillo, J.C., Carneiro, D., Serrano-Cuerda, J., Novais, P., Fernández-Caballero, A., Neves, J.: A multi-modal approach for activity classification and fall detection. Int. J. Syst. Sci. 45(4), 810–824 (2014)CrossRefGoogle Scholar
  13. 13.
    Colunas, M.F., Fernandes, J.M.A., Oliveira, I.C., Cunha, J.P.S.: Droid jacket: using an android based smartphone for team monitoring. In: 2011 7th International Wireless Communications and Mobile Computing Conference (IWCMC), IEEE, pp. 2157–2161 (2011)Google Scholar
  14. 14.
    Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient intelligence: technologies, applications, and opportunities. Pervas. Mobile Comput. 5(4), 277–298 (2009)CrossRefGoogle Scholar
  15. 15.
    Costa, R., Novais, P., Machado, J., Alberto, C., Neves, J.: Inter-organization cooperation for care of the elderly. In: Wang W, Li Y, Duan Z, Yan L, Li H, Yang X (eds) Integration and Innovation Orient to E-Society, vol. 2, pp. 200–208. Springer, Berlin (2007)Google Scholar
  16. 16.
    Dennis, A.R., Kinney, S.T.: Testing media richness theory in the new media: the effects of cues, feedback, and task equivocality. Inform. Syst. Res. 9(3), 256–274 (1998)CrossRefGoogle Scholar
  17. 17.
    Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.C.: Scenarios for ambient intelligence in 2010. Office for official publications of the European Communities (2001)Google Scholar
  18. 18.
    Epp, C., Lippold, M., Mandryk, R.L.: Identifying emotional states using keystroke dynamics. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, pp. 715–724 (2011)Google Scholar
  19. 19.
    Ferreira, J., Santos, H.: Keystroke dynamics for continuous access control enforcement. In: 2012 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), IEEE, pp. 216–223 (2012)Google Scholar
  20. 20.
    Friedewald, M., Vildjiounaite, E., Punie, Y., Wright, D.: The brave new world of ambient intelligence: an analysis of scenarios regarding privacy, identity and security issues. In: Clark JA, Paige RF, Polack FAC, Brooke PJ (eds) Security in Pervasive Computing, pp. 119–133. Springer, Berlin (2006)Google Scholar
  21. 21.
    Gaggioli, A., Pioggia, G., Tartarisco, G., Baldus, G., Ferro, M., Cipresso, P., Serino, S., Popleteev, A., Gabrielli, S., Maimone, R., et al.: A system for automatic detection of momentary stress in naturalistic settings. Stud. Health Technol. Inform. 181, 182–186 (2012)Google Scholar
  22. 22.
    González, I., Carretón, C., Ochoa, S.F., Bravo, J.: Towards a non-intrusive self-management system for asthma control using smartphones. In: Hervás R, Lee S, Nugent C, Bravo J (eds) Ubiquitous Computing and Ambient Intelligence. Personalisation and User Adapted Services, pp. 44–47. Springer, Berlin (2014)Google Scholar
  23. 23.
    Healey, J., Picard, R.W., et al.: Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 6(2), 156–166 (2005)CrossRefGoogle Scholar
  24. 24.
    Kailas, A., Chong, C.C., Watanabe, F.: From mobile phones to personal wellness dashboards. Pulse IEEE 1(1), 57–63 (2010)CrossRefGoogle Scholar
  25. 25.
    Lubar, J.F.: Discourse on the development of eeg diagnostics and biofeedback for attention-deficit/hyperactivity disorders. Biofeedback Self-regul. 16(3), 201–225 (1991)CrossRefGoogle Scholar
  26. 26.
    Marzano, S.: The New Everyday: Views on Ambient Intelligence. 010 Publishers (2003)Google Scholar
  27. 27.
    Piekarczyk, M., Ogiela, M.R.: On using palm and finger movements as a gesture-based biometrics. In: 2015 International Conference on Intelligent Networking and Collaborative Systems (INCOS), IEEE, pp. 211–216 (2015)Google Scholar
  28. 28.
    Pimenta, A., Carneiro, D., Novais, P., Neves, J.: Monitoring mental fatigue through the analysis of keyboard and mouse interaction patterns. In: Pan J-S, Polycarpou MM, Wozniak M, de Carvalho ACPLF, Quintián H, Corchado E (eds) Hybrid Artificial Intelligent Systems, pp. 222–231. Springer, Berlin (2013)Google Scholar
  29. 29.
    Pimenta, A., Carneiro, D., Novais, P., Neves, J.: A discomfort-sensitive chair for pointing out mental fatigue. In: Mohamed A, Novais P, Pereira A, González GV, Fernández-Caballero A (eds) Ambient Intelligence-Software and Applications, pp. 57–64. Springer, Berlin (2015)Google Scholar
  30. 30.
    Popper, K.: The Logic of Scientific Discovery. Routledge, London (2005)zbMATHGoogle Scholar
  31. 31.
    Rodrigues, M., Gonçalves, S., Carneiro, D., Novais, P., Fdez-Riverola, F.: Keystrokes and clicks: measuring stress on e-learning students. In: Casillas J, Martínez-López FJ, Vicari R, De la Prieta F (eds) Management Intelligent Systems, pp. 119–126. Springer, Berlin (2013)Google Scholar
  32. 32.
    Rouvroy, A.: Privacy, data protection, and the unprecedented challenges of ambient inteligence (September 11, 2007). Studies in Ethics, Law, and Technology. Berkeley Electronic Press (2008).
  33. 33.
    Sanches, P., Höök, K., Vaara, E., Weymann, C., Bylund, M., Ferreira, P., Peira, N., Sjölinder, M.: Mind the body!: designing a mobile stress management application encouraging personal reflection. In: Proc. of the 8th ACM conference on designing interactive systems, ACM, pp. 47–56 (2010)Google Scholar
  34. 34.
    Schwartz, M.S., Andrasik, F.E.: Biofeedback: A Practitioner’s Guide. Guilford Press, New York (2003)Google Scholar
  35. 35.
    Sridhar, M., Abraham, T., Rebello, J., D’souza, W., D’Souza, A.: Intrusion detection using keystroke dynamics. In: Proceedings of the Third International Conference on Trends in Information, Telecommunication and Computing, Springer, pp. 137–144 (2013)Google Scholar
  36. 36.
    Stucki, R.A., Urwyler, P., Rampa, L., Müri, R., Mosimann, U.P., Nef, T.: A web-based non-intrusive ambient system to measure and classify activities of daily living. J. Med. Internet Res. 16(7), e175 (2014). doi: 10.2196/jmir.3465
  37. 37.
    Turaga, P., Chellappa, R., Subrahmanian, V.S., Udrea, O.: Machine recognition of human activities: a survey. IEEE Trans. Circuits Syst. Video Technol. 18(11), 1473–1488 (2008)CrossRefGoogle Scholar
  38. 38.
    Wright, D.: The dark side of ambient intelligence. Info 7(6), 33–51 (2005)CrossRefGoogle Scholar
  39. 39.
    Xie, H., Zhang, M., Andreae, P.: Genetic programming for automatic stress detection in spoken english. In: Rothlauf F, Branke J, Cagnoni S, Costa E, Cotta C, Drechsler R, Lutton E, Machado P, Moore JH, Romero J, Smith GD, Squillero G, Takagi H (eds) Applications of Evolutionary Computing, pp. 460–471. Springer, Berlin (2006)Google Scholar
  40. 40.
    Zhao, J., Yuan, H., Liu, J., Xia, S.: Automatic lexical stress detection using acoustic features for computer assisted language learning. Proc APSIPA ASC, pp. 247–251 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Algoritmi Center/Department of InformaticsUniversidade do MinhoBragaPortugal

Personalised recommendations