Progress in Artificial Intelligence

, Volume 5, Issue 2, pp 129–135 | Cite as

Random extreme learning machines to predict electric load in buildings

  • Gonzalo Vergara
  • Juan I. Alonso-Barba
  • Emilio Soria-Olivas
  • José A. Gámez
  • Manuel Domínguez
Regular Paper
  • 131 Downloads

Abstract

The study of energy efficiency in buildings is an active field of research. Modeling and prediction of power-related magnitudes allow us to analyse the electrical consumption. This can lead to environmental and economical benefits. In this study we compare different techniques to predict active power consumed by buildings of the University of León (Spain). The original dataset contains time, environmental and electric data for 30 buildings. In our study we follow a two-step procedure: first, we grouped the buildings in terms of their electric load using principal component analysis (PCA) and k-medoids based clustering. From this clustering we selected three prototype buildings. Second, we have applied neural network-based machine learning techniques to carry out the prediction task. In particular, we used well-known multi layer perceptron (MLP) and extreme learning machine (ELM) algorithms, as well as a new model proposed in this paper which constitutes its major contribution: random extreme learning machines (RELM). Our analysis shows that RELM advantages MLP and ELM in labour days, which is the most interested case because of it highest electric demand.

Keywords

Ensembles Extreme learning machines Multi layer perceptron Prediction Electric load 

Notes

Acknowledgments

This work has been partially supported with JCCM funds by means of the project PEII-2014-049-P. Authors want to thank the SUPRESS research group of the university of León for their collaboration.

References

  1. 1.
    Alonso, S.: Supervisión de la energía eléctrica en edificios públicos de uso docente basada en técnicas de minería de datos visual. Ph.D. thesis, Departamento de Ingeniería Eléctrica, Electrónica, de Computadores y Sistemas. Universidad de Oviedo (2012)Google Scholar
  2. 2.
    Bian, X., Xu, Q., Li, B., Xu, L.: Equipment fault forecasting based on a two-level hierarchical model. In: 2007 IEEE International Conference on Automation and Logistics, pp. 2095–2099 (2007)Google Scholar
  3. 3.
    Bishop, C.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, New York (2006)MATHGoogle Scholar
  4. 4.
    Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)CrossRefMATHGoogle Scholar
  5. 5.
    Carpinteiro, O., Alves da Silva, A., Feichas, C.: A hierarchical neural model in short-term load forecasting. In: IJCNN (6), pp. 241–248 (2000)Google Scholar
  6. 6.
    Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Prentice Hall, USA (2009)Google Scholar
  7. 7.
    Huang, G., Zhu, Q., Siew, C.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)CrossRefGoogle Scholar
  8. 8.
    I.E.A. International Energy Agency.: Energy performance certification of buildings (2013)Google Scholar
  9. 9.
    Jolliffe, I.: Principal Component Analysis. Springer, Berlin (1986)CrossRefMATHGoogle Scholar
  10. 10.
    Kourentzes, N., Barrow, D.K., Crone, S.F.: Neural network ensemble operators for time series forecasting. Expert Syst. Appl. 41(9), 4235–4244 (2014)CrossRefGoogle Scholar
  11. 11.
    Kusiak, A., Li, M., Tang, F.: Modeling and optimization of HVAC energy consumption. Appl. Energy 87(10), 3092–3102 (2010)CrossRefGoogle Scholar
  12. 12.
    Ma, Y., Yu, J., Yang, C., Wang, L.: Study on power energy consumption model for large-scale public building. In: Proceedings of the 2nd international workshop on intelligent systems and applications, pp. 1–4 (2010)Google Scholar
  13. 13.
    Mateo, F., Carrasco, J.J., Millán-Giraldo, M., Sellami, A., Escandell-Montero, P., Martínez-Martínez, J.M., Soria-Olivas, E.: Machine learning techniques for short-term electric power demand prediction. In: 21st European Symposium on Artificial Neural Networks, ESANN 2013, Bruges, Belgium, April 24–26 (2013)Google Scholar
  14. 14.
    Ministerio de Fomento, Gobierno de España: Código Técnico de la Edificación (2010). http://www.codigotecnico.org/images/stories/pdf/ahorroEnergia/DBHE.pdf
  15. 15.
    Paliwal, M., Kumar, U.: Neural networks and statistical techniques: a review of applications. Expert Syst. Appl. 36(1), 2–17 (2009)CrossRefGoogle Scholar
  16. 16.
    Soliman, S., Al-Kandari, A. (eds.): Electric load modeling for long-term forecasting. In: Electrical Load Forecasting, pp. 353–406. Butterworth-Heinemann, Boston (2010)Google Scholar
  17. 17.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 3rd edn. Academic, USA (2006)MATHGoogle Scholar
  18. 18.
    Unión Europea.: Directiva 2006/32/CE del Parlamento europeo y del Consejo de 5 de abril sobre la eficiencia del uso final de la energía y los servicios energéticos (2006)Google Scholar
  19. 19.
    Unión Europea.: Directiva 2012/27/UE del Parlamento europeo y del Consejo de 25 de octubre relativa a la eficiencia energéica (2012)Google Scholar
  20. 20.
    US Department of Energy.: Buildings Energy Data Book (2010)Google Scholar
  21. 21.
    Vellido, A., Lisboa, P., Vaughan, J.: Neural networks in business: a survey of applications (1992–1998). Expert Syst. Appl. 17(1), 51–70 (1999)CrossRefGoogle Scholar
  22. 22.
    Vergara, G., Cózar, J., Romero-González, C., Gámez, J.A., Soria-Olivas, E.: Comparing elm against mlp for electrical power prediction in buildings. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H., editors. Bioinspired Computation in Artificial Systems, Lecture Notes in Computer Science, vol. 9108, pp. 409–418. Springer International Publishing (2015)Google Scholar
  23. 23.
    Willmott, C., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res. 30(1), 79 (2005)CrossRefGoogle Scholar
  24. 24.
    Wong, S., Wan, K., Lam, T.: Artificial neural networks for energy analysis of office buildings with daylighting. Appl. Energy 87(2), 551–557 (2010)CrossRefGoogle Scholar
  25. 25.
    Yu, H., Wilamowski, B.: The Industrial Electronics Handbook, vol. 5. CRC, Boca Raton (2011)Google Scholar
  26. 26.
    Zhao, H., Magoulès, F.: Parallel support vector machines applied to the prediction of multiple buildings energy consumption. J. Algorithms Comput. Technol. 4(2), 231–249 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Gonzalo Vergara
    • 1
  • Juan I. Alonso-Barba
    • 1
  • Emilio Soria-Olivas
    • 2
  • José A. Gámez
    • 1
  • Manuel Domínguez
    • 3
  1. 1.SIMD, I3AUniversidad de Castilla-La ManchaAlbaceteSpain
  2. 2.IDAL, E.T.S.EUniversidad de ValenciaBurjassotSpain
  3. 3.SUPRESS, Escuela de IngenieríasUniversidad de LeónLeónSpain

Personalised recommendations