Progress in Artificial Intelligence

, Volume 5, Issue 2, pp 121–128 | Cite as

Parallel strategic oscillation: an application to the maximum leaf spanning tree problem

  • Jesús Sánchez-Oro
  • Borja Menéndez
  • Eduardo G. Pardo
  • Abraham Duarte
Regular Paper


The maximum leaf spanning tree problem consists in finding a spanning tree of a graph that maximizes the number of leaves that the tree has. This problem has been found to be \(\mathcal {NP}\)-hard for general graphs. It has several relevant applications in the context of telecommunication networks. In this paper, we tackle this problem by proposing the use of a parallel algorithm based on the strategic oscillation methodology. In particular, we propose two different parallel approaches and we compare our best variant with previous algorithms of the state of the art. The proposed approach outperforms previous ones in the state of the art, which is also confirmed by the use of statistical tests.


Telecommunication networks Broadcasting Spanning tree Strategic oscillation 



This research has been partially supported by the Spanish “Ministerio de Economía y Competitividad”, and by “Comunidad de Madrid” with Grants Refs. TIN2012-35632-C02 and S2013/ICE-2894, respectively.


  1. 1.
    Alba, E.: Parallel Metaheuristics: A New Class of Algorithms, vol. 47. Wiley, New York (2005)CrossRefMATHGoogle Scholar
  2. 2.
    Balasundaram, B., Butenko, S.: Graph domination, coloring and cliques in telecommunications. In: Handbook of Optimization in Telecommunications, pp. 865–890. Springer, New York (2006)Google Scholar
  3. 3.
    Chen, S., Ljubić, I., Raghavan, S.: The regenerator location problem. Networks 55, 205–220 (2010)MathSciNetMATHGoogle Scholar
  4. 4.
    Chen, S., Raghavan, S.: The regenerator location problem. In: Proceedings of the 2007 International Network Optimization Conference (INOC’07) (2007)Google Scholar
  5. 5.
    Cook, S.: CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs (Applications of GPU Computing), 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2012)Google Scholar
  6. 6.
    Duarte, A., Martí, R., Gortázar, F.: Path relinking for large-scale global optimization. Soft Comput. 15, 2257–2273 (2011)CrossRefGoogle Scholar
  7. 7.
    Duarte, A., Martí, R., Resende, M., Silva, R.: Improved heuristics for the regenerator location problem. Int. Trans. Oper. Res. 21, 541–558 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Duarte, A., Pantrigo, J.J., Pardo, E.G., Sánchez-Oro, J.: Parallel variable neighbourhood search strategies for the cutwidth minimization problem. IMA J. Manag. Math. 27, 55–73 (2016)Google Scholar
  9. 9.
    Fernandes, L.M., Gouveia, L.: Minimal spanning trees with a constraint on the number of leaves. Eur. J. Oper. Res. 104, 250–261 (1998)CrossRefMATHGoogle Scholar
  10. 10.
    Fernau, H., Kneis, J., Kratsch, D., Langer, A., Liedloff, M., Raible, D., Rossmanith, P.: An exact algorithm for the maximum leaf spanning tree problem. In: Parameterized and Exact Computation, pp. 161–172. Springer, New York (2009)Google Scholar
  11. 11.
    Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32, 675–701 (1937)CrossRefMATHGoogle Scholar
  12. 12.
    Fujie, T.: An exact algorithm for the maximum leaf spanning tree problem. Comput. Oper. Res. 30, 1931–1944 (2003)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Fujie, T.: The maximum-leaf spanning tree problem: formulations and facets. Networks 43, 212–223 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gao, G., Sato, M., Ayguadé, E.: Special issue on parallel programming with openmp. International Journal of Parallel Programming 36, (2008)Google Scholar
  15. 15.
    García-López, F., Melián-Batista, B., Moreno-Pérez, J., Moreno-Vega, J.: The parallel variable neighborhood search for the \(p\)-median problem. J. Heuristics 8, 375–388 (2002)CrossRefMATHGoogle Scholar
  16. 16.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)MATHGoogle Scholar
  17. 17.
    Glover, F.: Heuristics for integer programming using surrogate constraints. Decis. Sci. 8, 156–166 (1977)CrossRefGoogle Scholar
  18. 18.
    Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell (1997)CrossRefMATHGoogle Scholar
  19. 19.
    Gortázar, F., Duarte, A., Laguna, M., Martí, R.: Black box scatter search for general classes of binary optimization problems. Comput. Oper. Res. 37, 1977–1986 (2010)CrossRefMATHGoogle Scholar
  20. 20.
    Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Algorithmica 20, 374–387 (1998)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Laguna, M., Gortázar, F., Gallego, M., Duarte, A., Martí, R.: A black-box scatter search for optimization problems with integer variables. J. Glob. Optim. 58, 497–516 (2014)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Lu, H.I., Ravi, R.: Approximating maximum leaf spanning trees in almost linear time. J. Algorithms 29, 132–141 (1998)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Oaks, S., Wong, H.: Java Threads. O’Reilly Media (2004)Google Scholar
  25. 25.
    Sánchez-Oro, J., Duarte, A.: Beyond Unfeasibility: Strategic Oscillation for the Maximum Leaf Spanning Tree Problem. In: Lecture Notes in Computer Science, vol. 9422. Springer, New York (2015)Google Scholar
  26. 26.
    Sánchez-Oro, J., Sevaux, M., Rossi, A., Martí, R., Duarte, A.: Solving dynamic memory allocation problems in embedded systems with parallel variable neighborhood search strategies. Electron. Notes Discret. Math. 47, 85–92 (2015)CrossRefGoogle Scholar
  27. 27.
    Solis-Oba, R.: 2-Approximation Algorithm for Finding a Spanning Tree with Maximum Number of Leaves. Springer, New York (1998)CrossRefMATHGoogle Scholar
  28. 28.
    Storer, J.A.: Constructing full spanning trees for cubic graphs. Inf. Process. Lett. 13, 8–11 (1981)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Talbi, E.G.: Metaheuristics: from design to implementation. Wiley, New York (2009)CrossRefMATHGoogle Scholar
  30. 30.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6)80–83 (1945)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Dpto. Informática y EstadísticaUniversidad Rey Juan CarlosMadridSpain
  2. 2.Dpto. Sistemas InformáticosUniversidad Politécnica de MadridMadridSpain

Personalised recommendations