Effect of Structural Variation of Dead Trunks on Passalid (Coleoptera: Passalidae) Assemblages in Central Amazonian Campinaranas

  • J B. R. AlencarEmail author
  • C R. V. da Fonseca
  • F B. Baccaro
  • M M. F. Bento
  • J M. Ribeiro
Ecology, Behavior and Bionomics


The present study investigated the occurrence of passalids in dead trunks with structural variations. Trunks were found in areas of white sand forests, locally known as Campinarana, in the state of Amazonas, Brazil. The collections were extended from May to December 2009. The mean diameter of the trunks and their stage of decomposition were classified, and the species of Passalidae were classified according to the location of their galleries. We used multiple generalized models to investigate the relationship between abundance and permutational multivariate analysis of variance (PERMANOVA) to investigate the relationships between predictors and passalid composition. A total of 361 passalids belonging to 13 species were collected from 11 tree species, of which Aldina heterophylla represented the highest proportion of logs (55%). Only the diameter of the trunk was related to the abundance of species, with trunks of larger diameters presented more individuals. The passalid composition was correlated with the diameter and decomposition of the trunks of all species of trees and only with the diameter of the trunks of A. heterophylla. Most of the species collected in Campinaranas construct their galleries in two or more regions of the trunk. The region that supported a greater number of colonies was the sapwood, followed by the inner bark and the soil-stem interface. The general habit of passalids found may be advantageous, probably to compensate for the low dispersion and isolation in areas with low availability of resources, such as Campinaranas forests in the Amazon.


Saproxylic beetles rotten trunks substrate 



To Fernando Pinto, Márcio Barbosa and Luís Aquino for help with field collections. To Zayra Sátyro and Kamille Vieira for their contributions to initial versions of this manuscript, and to Danilo Bento for help with making the maps. To the Instituto Nacional de Pesquisas da Amazônia (INPA) by logistics and support. To the Wood Anatomy section at INPA by the identification of botanical species.

Author Contribution

CRV FONSECA: contributed to conducting a research and investigation process, specifically conducting experiments and data collection. The conceptualization of ideas was performed jointly by JBR ALENCAR, CRV FONSECA and FB BACCARO: formulation of research objectives, methodology and model creation. FB BACCARO: application of statistical, mathematical and computational techniques for analysis of study data. MMF BENTO and JM RIBEIRO: Verification, reproducibility of results. JBR ALENCAR wrote the first draft, with the contribution of all authors.

Funding Information

This study was financially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). FBB is continuously supported by a CNPq by a productivity grant from CNPq (#309600/2017-0).


  1. Amat-García G, Reyes-Castillo P (2007) Los Passalidae (Coleoptera: Scarabaeoidea: Passalidae) del departamento del Amazonas, Colombia. Caldasia 29:329–354Google Scholar
  2. Anderson AB (1981) White-sand vegetation of Brazilian Amazonia. Biotropica 13:199–210CrossRefGoogle Scholar
  3. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. CrossRefGoogle Scholar
  4. Aragão LEOC, Malhi Y, Metcalfe DB et al (2009) Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosci Discuss 6:2441–2488. CrossRefGoogle Scholar
  5. Boucher S (2005) Évolution et phylogénie des Coléoptères Passalidae (Scarabaeoidea). Ann la Société Entomol Fr 41:239–604. CrossRefGoogle Scholar
  6. Boucher S (1986) Contribution à létude des Passalidae Guyano-Amazoniens (Coleotera, Sacarabaeoidea). Ann la Société Entomlogique Fr 22:491–533Google Scholar
  7. Breheny P, Burchett W (2017) Visualizing regression models using visreg. 1–15
  8. Bunnell FL, Houde I (2010) Down wood and biodiversity — implications to forest practices. Environ Rev 18:397–421. CrossRefGoogle Scholar
  9. Castillo ML (1987) Descripcion de la comunidade de Coleoptera Passalidae en el bosque tropical perennifolio de lá Region de “Los Tuxtlas” Veracruz. Universidade Nacional Autonoma de MexicoGoogle Scholar
  10. Castillo ML, Moron MA (1992) Observaciones sobre la degradacion de madeira por algunas espécies de pasalidos (Coleoptera, Lamellicornia). Folia Entomológica Mex 84:35–44Google Scholar
  11. Castillo ML, Reyes-Castillo P (2003) Los Passalidae: coleópteros tropicales degradadores de troncos de árboles muertos. In: Álvarez-Sánchez J, Naranjo-García E (eds) Ecología del suelo en la Selva Tropical Húmeda de México. UNAM, México. UNAM, p 302Google Scholar
  12. Ceja-Navarro JA, Nguyen NH, Karaoz U, Gross SR, Herman DJ, Andersen GL, Bruns TD, Pett-Ridge J, Blackwell M, Brodie EL (2014) Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus. ISME J 8:6–18. CrossRefPubMedGoogle Scholar
  13. Chambers JQ, Higuchi N, Schimel JP, Ferreira LV, Melack JM (2000) Decomposition and carbon cycling of dead trees in tropical forests of the Central Amazon. Oecologia 122:380–388. CrossRefPubMedGoogle Scholar
  14. Cline AR, Leschen RAB (2005) Coleoptera associated with the oyster mushroom, Pleurotus ostreatus fries, in North America. Southeast Nat 4:409–420.[0409:CAWTOM]2.0.CO;2 CrossRefGoogle Scholar
  15. Edmonds RL., Marra JL (1999) Decomposition of woody material: nutrient dynamics, invertebrate/fungi relationships and management in Northwest forests. In: Organism functions and processes, management effects on organisms and processes, and role of soil organisms in restoration. Proceedings of the Pacific Northwest Forest and Rangeland Soil Organism Symposium. State University, USA, 17–19 March 1998. Gen. Tech. Rep. PNW-GTR-461. Corvallis, OR: U.S.Department of Agriculture Forest Service, Pacific Northwest Research Station:, Oregon, pp 68–79Google Scholar
  16. Ferry B, Morneau F, Bontemps J-D et al (2010) Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest. J Ecol 98:106–116. CrossRefGoogle Scholar
  17. Fine PVA, García-Villacorta R, Pitman NCA et al (2010) A floristic study of the white-sand forests of Peru. Ann Missouri Bot Gard 97:283–305. CrossRefGoogle Scholar
  18. da Fonseca CRV (1988) Contribução ao conhecimento da bionomia de Passalus convexus Dalman, 1817 e Passalus latifrons Percheron, 1841 (Coleoptera, Passalidae). Acta Amaz 18:197–222CrossRefGoogle Scholar
  19. da Fonseca CRV, Reyes-Castillo P (2004) Synopsis on Passalidae family (Coleoptera: Scarabaeoidea) of Brazil with description of a new species of Veturius Kaup, 1871. Zootaxa 789:1–26CrossRefGoogle Scholar
  20. Galindo-Cardona A, Giray T, Sabat AM, Reyes-Castillo P (2007) Bess beetle (Coleoptera: Passalidae): substrate availability, dispersal, and distribution in a subtropical wet forest. Ann Entomol Soc Am 100:711–720.[711:BBCPSA]2.0.CO;2 CrossRefGoogle Scholar
  21. Graham SA (1925) The felled tree trunk as an ecological unit. Ecology 6:397–411. CrossRefGoogle Scholar
  22. Grove S, Meggs J (2003) Coarse woody debris, biodiversity and management: a review with particular reference to Tasmanian wet eucalypt forests. Aust For 66:258–272. CrossRefGoogle Scholar
  23. Grove SJ (2002) Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst 33:1–23. CrossRefGoogle Scholar
  24. Guimarães FS, Bueno GT (2015) As campinas e campinaranas amazônicas / The amazonian campinas and campinaranas. Cad Geogr 26:113. CrossRefGoogle Scholar
  25. Haack RA, Slansky F (1987) Nutritional ecology of wood-feeding Coleoptera, Lepidoptera and Hymenoptera. Nutritional ecology of insects, mites, spiders, and related invertebrates, In, pp 449–486Google Scholar
  26. Hammond HJ, Langor DW, Spence JR (2004) Saproxylic beetles (Coleoptera) using Populus in boreal aspen stands of western Canada: spatiotemporal variation and conservation of assemblages. Can J For Res 34:1–19. CrossRefGoogle Scholar
  27. IDESAM (2009) - Planos de Manejo - Reserva de Desenvolvimento Sustentável do Uatumã. Accessed 21 Nov 2017
  28. Jackson HB (2010) From individual dispersal behavior to the multi-scale distribution of a saproxylic beetle. LSU Grad Fac 172Google Scholar
  29. Jackson HB, Baum KA, Cronin JT (2012) From logs to landscapes: determining the scale of ecological processes affecting the incidence of a saproxylic beetle. Ecol Entomol 37:233–243. CrossRefGoogle Scholar
  30. Jia L, Buendia-Kandia F, Dumarcay S et al (2017) Fast pyrolysis of heartwood, sapwood, and bark: a complementary application of online photoionization mass spectrometry and conventional pyrolysis gas chromatography/mass spectrometry. Energy Fuel 31:4078–4089. CrossRefGoogle Scholar
  31. Jiménez-Ferbans L, Reyes-Castillo P, Schuster JC (2015) Passalidae (Coleoptera: Scarabaeoidea) of the Greater and Lesser Antilles. Zootaxa 3956:491–512. CrossRefPubMedGoogle Scholar
  32. Kon M, Johki Y (1987) A new type of microhabitat, the interface between the log and the ground, observed in the passalid beetle of borneo Taeniocerus bicanthatus (Coleoptera: Passalidae). J Ethol 5:197–198. CrossRefGoogle Scholar
  33. Lawrence JF (1989) Mycophagy in Coleoptera: feeding strategies and morphological adaptations. Insect-Fungus Interactions. The Royal Entomological Society of London, In, pp 2–23Google Scholar
  34. Long JS (1997) Regression models for categorical and limited dependent variables. Thousand Oaks, CaliforniaGoogle Scholar
  35. Luederwaldt H (1931) Monografia dos passalídeos do Brasil (Col.). Rev do Mus Paul 17:1–262Google Scholar
  36. Luizão F (2007) Ciclos de nutrientes na Amazônia: respostas às mudanças ambientais e climáticas. Cienc Cult:1–6Google Scholar
  37. Mackensen J, Bauhus J, Webber E (2003) Decomposition rates of coarse woody debris—a review with particular emphasis on Australian tree species. Aust J Bot 51:27. CrossRefGoogle Scholar
  38. Magoulick DD (1998) Effect of wood hardness, condition, texture and substrate type on community structure of stream invertebrates. Am Midl Nat 139:187–200.[0187:EOWHCT]2.0.CO;2 CrossRefGoogle Scholar
  39. Marra DM, Chambers JQ, Higuchi N et al (2014) Large-scale wind disturbances promote tree diversity in a Central Amazon forest. PLoS One 9. CrossRefGoogle Scholar
  40. Maser C, Anderson RG, Kermit Cromack J et al (1979) Dead and down woody material. In: Thomas JW (ed) Wildlife habitats in managed forests of the Blue Mountains of Oregon and Washington. DC, USDA Forest Service, Agriculture Handbook, Washington, p 553Google Scholar
  41. Maser C, Trappe J (1984) The seen and unseen world of the fallen tree USDA For Serv Pacific Northwest For Range Exp Station Gen Tech Rep PNW-164 56Google Scholar
  42. Mattos I, Mermudes JRM (2014) List Passalidae (Coleoptera: Scarabaeoidea) from Ilha Grande (Angra dos Reis, RJ) with new diagnosis and distributional records in Brazil. Check List 10:260–268CrossRefGoogle Scholar
  43. Meggs J, Taylor RJ (1999) Distribution and conservation status of the Mt Mangana stag beetle, Lissotes menalcas(Coleoptera: Lucanidae). Pap Proc R Soc Tasmania 133:23–28CrossRefGoogle Scholar
  44. Michaels K, Bornemissza G (1999) Effects of clearfell harvesting on lucanid beetles (Coleoptera: Lucanidae) in wet and dry sclerophyll forests in Tasmania. J Insect Conserv 3:85–95. CrossRefGoogle Scholar
  45. Moreno-Fonseca CJ, Amat-García GD (2016) Morfoecología de gremios en escarabajos (Coleoptera: Passalidae) en un gradiente altitudinal en robledales de la Cordillera Oriental, Colombia. Rev Biol Trop 64:289–303. CrossRefPubMedGoogle Scholar
  46. Mouzinho JRC, da Fonseca CRV (1998) Contribuição do estudo da passalidofauna (Coleoptera, Scarabaeoidea, Passalidae) em uma área de terra firme na Amazônia Central. Acta Zool Mex 73:19–44Google Scholar
  47. Negrón-Juárez R, Jenkins H, Raupp C et al (2017) Windthrow variability in Central Amazonia. Atmosphere (Basel) 8:28. CrossRefGoogle Scholar
  48. Ohaus F (1909) Bericht über eine entomologische Studienreise in Südamerika. Entomol Zeitung 70:3–139Google Scholar
  49. R Core Team (2019) R: A language and environment for statistical computing. R Found Stat Comput Vienna, Austria. doi: ISBN 3-900051-07-0Google Scholar
  50. Reyes-Castillo P (2000) Coleoptera Passalidae De México. Monogr Terc Milen 1:171–182Google Scholar
  51. Reyes-Castillo P, Halffter G (1984) La estructura social de los Passalidae (Coleoptera: Lamellicornia). Folia Entomol Mex 61:49–72Google Scholar
  52. Rodrigues JVFC, Gonçalves JFDC (2014) Leaf gas exchange, photon capture and light harvest in Aldina heterophylla along a vegetation gradient in the Amazon rainforest. Am J Plant Sci 05:1477–1488. CrossRefGoogle Scholar
  53. Schigel DS (2012) Fungivory and host associations of Coleoptera: a bibliography and review of research approaches. Mycol An Int J Fungal Biol 3:258–272. CrossRefGoogle Scholar
  54. Schuster JC (1978) Biogeographical and ecological limits of New World Passalidae (Coleoptera). Coleop Bull 32:21–28. CrossRefGoogle Scholar
  55. Seibold S, Bässler C, Brandl R et al (2015) Experimental studies of dead-wood biodiversity — a review identifying global gaps in knowledge. Biol Conserv 191:139–149. CrossRefGoogle Scholar
  56. Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull 49:10–41Google Scholar
  57. Southwood TRE (1977) Habitat, the templet for ecological strategies? J Anim Ecol 46:336. CrossRefGoogle Scholar
  58. Speight MCD (1989) Saproxylic invertebrates and their conservation. Council of Europe, StrasbourgGoogle Scholar
  59. Stone JN, MacKinnon A, Parminter JV, Lertzman KP (1998) Coarse woody debris decomposition documented over 65 years on southern Vancouver Island. Can J For Res 28:788–793. CrossRefGoogle Scholar
  60. Targhetta N, Kesselmeier J, Wittmann F (2015) Effects of the hydroedaphic gradient on tree species composition and aboveground wood biomass of oligotrophic forest ecosystems in the Central Amazon basin. Folia Geobot 50:185–205. CrossRefGoogle Scholar
  61. Taylor AM, Garner BL, Morrell JJ (2002) Heartwood formation and natural duraility - a review. Wood Fiber Sci 34:587–611Google Scholar
  62. Ter Steege H, Sabatier D, Castellanos H et al (2000) An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana shield. J Trop Ecol 16:S0266467400001735. CrossRefGoogle Scholar
  63. de Toledo JJ, Magnusson WE, Castilho CV, Nascimento HEMM (2011) How much variation in tree mortality is predicted by soil and topography in Central Amazonia? For Ecol Manag 262:331–338. CrossRefGoogle Scholar
  64. Ulyshen MD (2018) Saproxylic insects. Springer International Publishing, ChamCrossRefGoogle Scholar
  65. Ulyshen MD, Pawson SM, Branco M et al (2018) Utilization of non-native wood by saproxylic insects. In: Ulyshen MD (ed) Saproxylic insects. Springer International Publishing, Cham, pp 797–834CrossRefGoogle Scholar
  66. USDA-FS Forest Products Laboratory (1999) Wood handbook-wood as an engieering material:463Google Scholar
  67. Vicentini A (2004) A vegetação ao longo de um gradiente edáfico no Parque Nacional do Jaú. In: BORGES SH, IWANAGA S, DURIGAN CC, PINHEIRO MR (eds) Janelas para a biodiversidade no Parque Nacional do Jaú: uma estratégia para o estudo da biodiversidade na Amazônia. Manaus, pp 105–131Google Scholar
  68. Vulcano MA, Pereira FS (1967) Sinópse dos Passalidae e Scarabaeidae s. str. da regiao Amazônica (Insecta, Coleoptera). Atas do Simpósio sôbre a Biota Amaz 5:533–603Google Scholar
  69. Yee M (2005) The ecology and habitat requirements of saproxylic beetles native to Tasmanian wet eucalypt forests: potential impacts of commercial forestry practices. University of Tasmania CRC for Sustainable Production Forestry, School of Agricultural ScienceGoogle Scholar
  70. Yee M, Grove SJ, Richardson AMM, Mohammed CL (2006) Brown rot in inner heartwood: why large logs support characteristic saproxylic beetle assemblages of conservation concern. In: Meurisse RT., Ypsilantis WG., Seybold C (eds) Insect biodiversity and dead wood: proceedings of a symposium for the 22nd International Congress of Entomology. Gen. Tech. Rep. SRS-93. Asheville, NC: U.S. Department of Agriculture Forest Service, Southern Research Station, pp 42–56Google Scholar
  71. Zuur AFAF, Ieno ENEN, Walker NJNJ, et al (2009) Mixed effects models and extensions in ecology with R. Springer, New York. CrossRefGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2020

Authors and Affiliations

  1. 1.Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-Graduação em Ciências Biológicas (Entomologia)ManausBrasil
  2. 2.Depto de BiologiaUniv Federal do AmazonasManausBrasil

Personalised recommendations