The Past and Current Potential Distribution of the Fruit Fly Anastrepha obliqua (Diptera: Tephritidae) in South America

  • R P D Santos
  • J G Silva
  • E A MirandaEmail author
Pest Management


Anastrepha obliqua (Macquart) is an agricultural pest of wide geographic distribution infesting a vast list of host species in America. However, little is known about the past geographic distribution of this species. In this study, we investigated the potential past and current distribution of species in South America. In this sense, the MaxEnt algorithm was used to model the ecological niche of the species in the past (Last Interglcial Maximum; Last Glacial Maximum) and current periods. The results suggested that under the current climatic conditions, A. obliqua showed high environmental suitability to become established in most South American countries, especially in Brazil. The lowest suitability indices were observed in Chile, Argentina, and Uruguay. The past analysis for Last Glacial Maximum revealed that there was no significant change in the distribution potential of the species when compared to the current model; however, in the Last Interglacial Maximum period, there was a large reduction in the areas of suitability for the species when compared to the current and Last Glacial Maximum distribution models. The analysis also revealed vast areas of refuges for the species mainly on the coast of Brazil, as well as Venezuela, Bolivia, Guyana, and Surinam. The results presented here may be useful for future phylogeographical studies in order to test if the refuge areas concentrate greater genetic diversity for this species. In addition, our study provides important information for understanding the current dynamics of A. obliqua, which may be useful for control programs in places where this species can become a pest.


Modeling MaxEnt insect pest bioclimatic variables paleomodeling 



RPS thanks the scholarship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). JGS acknowledges her research grant (305452 / 2012-6) from CNPq. EAM thanks CNPq for his postdoctoral fellowship (154912/2016-6 and 151193/2019-3, PDJ-CNPq). JGS is a CNPq fellow.

Author Contribution Statement

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by EAM and RPDS. The first draft of the manuscript was written by all authors, which commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Supplementary material

13744_2019_741_MOESM1_ESM.pdf (125 kb)
ESM 1 (PDF 125 kb)


  1. Ab’Saber AN (1983) O domínio dos cerrados: introdução ao conhecimento. Revista do Service Público 111:41–55Google Scholar
  2. Aguirre-Ramirez EJ, Velasco-Cuervo SM, Gallo-Franco JJ, Gonzáles R, Carrejo NS, Toro-Perea N (2017) Genetic diversity and population structure of Anastrepha obliqua in southwestern Colômbia. Entomol Exp Appl 164(3):291–304. CrossRefGoogle Scholar
  3. Aleixo A, Albernaz AL, Grelle CEV, Vale MM, Rangel TF (2010) Mudanças climáticas e a biodiversidade dos biomas brasileiros: Passado presente e futuro. Nat Conserv 8(2):194–196. CrossRefGoogle Scholar
  4. Anderson RP, Raza A (2010) The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J Biogeogr 37(7):1378–1393. CrossRefGoogle Scholar
  5. Auler AS, Wang X, Edwards RL, Cheng H, Cristalli OS, Smart PL, Richards DA (2004) Quarternary ecological and geomorphic changes associated with rainfall events in presently semi-arid northeastern Brazil. J Quat Sci 19(7):693–701. CrossRefGoogle Scholar
  6. Behling H (2002) South and southeast Brazilian grasslands during Late Quaternary times: a synthesis. Palaeogeor Palaecl 177(1–2):19–27. CrossRefGoogle Scholar
  7. Behling H, Arz HW, Wefer G (2000) Late Quaternary vegetational and climate dynamics in northeastern Brazil inferences from marine core GeoB 3104-1. Quat Sci Rev 19:981–994CrossRefGoogle Scholar
  8. Brown KS Jr (1977) Centros de evolução refúgios quaternários e conservação de patrimônios genéticos na região neotropical: padrões de diferenciação em Ithomiinae (Lepidoptera: Nymphalidae). Acta Amaz 7(1):75–13CrossRefGoogle Scholar
  9. Brown KS Jr, Ab’Saber AN (1979) Ice-age forest refuges and evolution in the Neotropics: correlation of paleoclimatological geomorphological and pedological data with modern biological endemism. Paleoclima 5:1–30Google Scholar
  10. Brown KS, Sheppard PM, Turner JRG (1974) Quaternary refugia in tropical America: evidence from race formation in Heliconius butterflies. Proc R Soc Lond B 187(1088):369–378CrossRefGoogle Scholar
  11. Carnaval AC, Bates JM (2007) Amphibian DNA shows marked genetic structure and tracks Pleistocene climate change in northeastern Brazil. Evolution Int J Org Evolution 61(12):2942–2957CrossRefGoogle Scholar
  12. Carnaval AC, Moritz C (2008) Historical climate modeling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J Biogeogr 35(7):1187–1201CrossRefGoogle Scholar
  13. Carnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C (2009) Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323(5915):785–789. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Carvalho AF, Del Lama MA (2015) Predicting priority areas for conservation from historical climate modeling: stingless bees from Atlantic Forest hotspot as a case study. J Insect Conserv 19(3):581–587. CrossRefGoogle Scholar
  15. Castañeda MR, Selivon D, Hernández-Ortiz V, Soto A, Canal NA (2015) Morphometric divergence in populations of Anastrepha obliqua (Diptera: Tephritidae) from Colombia and some Neotropical locations. ZooKeys 2015(540):61–81. CrossRefGoogle Scholar
  16. Cheng H, Sinha A, Cruz FW, Wang X, Edwards RL, D’Horta FM, Ribas CC, Vuille M, Stott LD, Auler AS (2013) Climate change patterns in Amazonia and biodiversity. Nat 4:1411. CrossRefGoogle Scholar
  17. Congrains C, Henry DAW, Abalaka J, Carvalho F, Miranda EA, Cumming GS, Henry DAW, Manu AS, Abalaka J, Rocha CD, Diop MS (2016) Genetic and paleomodelling evidence of the population expansion of the cattle egret Bubulcus ibis in Africa during the climatic oscillations of the Late Pleistocene. J Avian Biol 47(6):846–857. CrossRefGoogle Scholar
  18. Da Silva PAH (2008) A Teoria dos Refúgios Florestais e sua relação com a extinção da megafauna pleistocênica: um estudo de caso. Estudos Geográficos: 5(1):121–134Google Scholar
  19. De Meyer M, Robertson MP, Peterson AT, Mansell MW (2008) Ecological niches and potential geographical distributions of Mediterranean fruit fly (Ceratitis capitata) and Natal fruit fly (Ceratitis rosa). J Biogeogr 35(2):270–281Google Scholar
  20. De Meyer M, Robertson MP, Mansell MW, Ekesi S, Tsuruta K, Mwaiko W, Vayssières J-F, Peterson AT (2010) Ecological niche and potential geographic distribution of the invasive fruit fly Bactrocera invadens (Diptera Tephritidae). Bull Entomol Res 100(1):35–48CrossRefGoogle Scholar
  21. Engler R, Guisan A, Rechsteiner L (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J Appl Ecol 41:263–274CrossRefGoogle Scholar
  22. Fu L, Li ZH, Huang GS, Wu XX, Ni WL, Qü WW (2014) The current and future potential geographic range of West Indian fruit fly Anastrepha obliqua (Diptera: Tephritidae). Insect Sci 21(2):234–244. CrossRefPubMedGoogle Scholar
  23. Geng J, Li ZH, Wan FH, Wang ZL (2008) Analysis of the suitability of Mexican fruit fly Anastrepha ludens in China. Plant Prot 34:93–98Google Scholar
  24. Geng J, Li ZH, Rajotte EG, Wan FH, Lu XY, Wang ZL (2011) Potential geographical distribution of Rhagoletis pomonella (Diptera: Tephritidae) in China. Insect Sci 18(5):575–582CrossRefGoogle Scholar
  25. Giannini TC, Acosta AL, Garófalo CA, Saraiva AM, Alves-dos-Santos I, Imperatriz-Fonseca VL (2012) Pollination services at risk: bee habitats will decrease owing to climate change in Brazil. Ecol Model 244:127–131. CrossRefGoogle Scholar
  26. Gotelli NJ, Anderson MJ, Arita HT, Chao A, Colwell RK, Connolly SR, Currie DJ, Dunn RR, Graves GR, Green JL, Grytnes J-A, Jiang Y-H, Jetz W, Lyons SK, McCain CM, Magurran AE, Rahbek C, Rangel TFLVB, Soberón J, Wedd CO, Willig MR (2009) Patterns and causes of species richness: a general simulation model for macroecology. Ecol Lett 12(9):873–886CrossRefGoogle Scholar
  27. Haffer J (1969) Speciation in Amazonian Forest Birds. Science 165(3889):131–137. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Haffer J (1977) Pleistocene speciation in Amazonian birds. Amazoniana 6(2):161–192Google Scholar
  29. Haffer J, Prance GT (2002) Impulsos climáticos da evolução na Amazônia durante o Cenozóico: sobre a teoria dos Refúgios da diferenciação biótica. Estudos Avançados 16(46):175–206. CrossRefGoogle Scholar
  30. Hernández-Ortiz V, Aluja M (1993) Listado de especies del género neotropical Anastrepha (Diptera: Tephritidae) con notas sobre su distribucion y plantas hospederas. Folia Entomol Mex 88:89–105Google Scholar
  31. Hijmans RJ, van Etten J (2014) Raster: geographic data analysis and modeling. 2015. R package version 2: 4-18.Google Scholar
  32. Hou BH, Zhang RJ (2005) Potential distributions of the fruit fly Bactrocera dorsalis (Diptera: Tephritidae) in China as predicted by CLIMEX. Acta Ecol Sin 25:1569–1574Google Scholar
  33. Hugall A, Moritz C, Moussalli A, Stanisic J (2002) Reconciling paleodistribution models and comparative phylogeography in the Wet Tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875). PNAS 99(9):6112–6117. CrossRefPubMedGoogle Scholar
  34. Irfan-Ullah M, Amarnath G, Murthy MSR, Peterson AT (2006) Mapping the geographic distribution of Aglaia bourdillonii Gamble (Meliaceae), an endemic and threatened plant, using ecological niche modeling, p.16:1917-1925. In Plant Conservation and Biodiversity, 351pGoogle Scholar
  35. Jetz W, Rahbek C (2002) Geographic range size and determinants of avian species richness. Science 297(5586):1548–1551CrossRefGoogle Scholar
  36. Jetz W, Rahbek C, Colwell RK (2004) The coincidence of rarity and richness and the potential signature of history in centres of endemismo. Ecol Lett 7(12):1180–1191. CrossRefGoogle Scholar
  37. Johnson DDP, Hay SI, Rogers DJ (1998) Contemporary environmental correlates of endemic bird areas derived from meteorological satellite sensors. Proc R Soc Lond B Biol Sci 265:951–959CrossRefGoogle Scholar
  38. Lv WG, Lin W, Li ZH, Geng J, Wan FH, Wang ZL (2008) Potential geographic distribution of Ber fruit fly Carpomya vesuviana Costa in China. Plant Quarent 22:343–347 (in Chinese)Google Scholar
  39. Martins FDEM (2011) Historical biogeography of the Brazilian Atlantic forest and the Carnaval – Moritz model of Pleistocene refugia: what do phylogeographical studies tell us? Biol J Linn Soc 104:499–509. CrossRefGoogle Scholar
  40. Miranda EA, Carvalho AF, Silva CI, Del Lama MA (2015) Natural history and biogeography of Partamona rustica an endemic bee in dry forests of Brazil. Insect Soc 62(3):255–263 Springer Basel. CrossRefGoogle Scholar
  41. Miranda EA, Batalha-filho H, Congrains C, Ferreira M, Del Lama MA, Carvalho AF (2016) Phylogeography of Partamona rustica (Hymenoptera: Apidae) an endemic stingless bee from the neotropical dry forest diagonal. PLoS One 11(10):e0164441. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Miranda EA, Ferreira KM, Carvalho AT, Martins CF, Fernandes CR, Del Lama MA (2017) Pleistocene climate changes shaped the population structure of Partamona seridoensis (Apidae: Meliponini) an endemic stingless bee from the Neotropical dry forest. PLoS One 12(4):e0175725CrossRefGoogle Scholar
  43. Miranda EA, Carvalho AT, Gomes-Miranda JJ, Souza CS, Costa MA (2019) Priority areas for conservation of orchid bees (Apidae, Euglossini) in the Atlantic Forest. J Insect Conserv 23(3):613–621. CrossRefGoogle Scholar
  44. Norrbom AL (2004) Fruit fly (Diptera: Tephritidae) speciesdatabase.
  45. Norrbom AL, Korytkowski CA, Zucchi RA, Uramoto K, Venable GL, McCormick J, Dallwitz MJ (2012) Anastrepha and Toxotrypana: descriptions illustrations and interactive keys. DELTA-Description Language for Taxonomy. http://delta-intkey. com/anatoxGoogle Scholar
  46. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR (2015) O’Hara RB Simpson GL Solymos P Stevens MHH Wagner H. Vegan: Community Ecology Package 2: 0-10Google Scholar
  47. Passos JF, Nascimento DB, Menezes RAT, Adaime R, Araujo EL, Lima KM, Zucchi RA, Ronchi-Teles B, Nascimento RR, Ruiz-Arce R, Barr NB, McPheron BA, Silva JG (2018) Genetic structure and diversity in Brazilian populations of Anastrepha obliqua (Diptera: Tephritidae). PLoS One 13(12):e0208997CrossRefGoogle Scholar
  48. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3-4):231–259CrossRefGoogle Scholar
  49. QGis DT (2011) Quantum GIS geographic information system. Open Source Geospatial Foundation Project 45Google Scholar
  50. Qin Y, Paini DR, Wang C, Fang Y, Li Z (2015) Global establishment risk of economically important fruit fly species (Tephritidae). PLoS One 10(1):e0116424CrossRefGoogle Scholar
  51. Rosauer DAN, Laffan SW, Crisp MD, Donnellan SC, Cook LG (2009) Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history. Mol Ecol 18(19):4061–4072CrossRefGoogle Scholar
  52. Ruiz-Arce R, Barr NB, Owen CL, Thomas DB, McPheron BA (2012) Phylogeography of Anastrepha obliqua inferred with mtDNA sequencing. J Econ Entomol 105(6):2147–2160. CrossRefPubMedGoogle Scholar
  53. Scally M, Into F, Thomas DB, Ruiz-Arce R, Barr NB, Schuenzel EL (2016) Resolution of inter and intra-species relationships of the West Indian fruit fly Anastrepha obliqua. Mol Phylogenet Evol 101:286–293CrossRefGoogle Scholar
  54. Siqueira MFD (2005) Uso de modelagem de nicho fundamental na avaliação do padrão de distribuição geográfica de espécies vegetais, Tese de Doutorado, Universidade de São Paulo, Escola de Engenharia de São Carlos, 107pGoogle Scholar
  55. Smith-Caldas MRB, McPheron BA, Silva JG, Zucchi RA (2001) Phylogenetic relationships among species of the fraterculus group (Anastrepha: Diptera: Tephritidae) inferred from DNA sequences of mitochondrial cytochrome oxidase I. Neotrop Entomol 30(4):565–573CrossRefGoogle Scholar
  56. Soley-Guardia M, Radosavljevic A, Rivera JL, Anderson RP (2014) The effect of spatially marginal localities in modelling species niches and distributions. J Biogeogr 41(7):1390–1401CrossRefGoogle Scholar
  57. Steck GJ (1999) Taxonomic Status of Anastrepha fraterculus 1064: 13-20 doi:
  58. Weldon CW, Nyamukondiwa C, Karsten M, Chown SL, Terblanche JS (2018) Geographic variation and plasticity in climate stress resistance among southern African populations of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Sci Rep 8(1):9849CrossRefGoogle Scholar
  59. Werneck FP, Nogueira C, Colli GR, Sites JW Jr, Costa GC (2012) Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas species richness and conservation in a biodiversity hotspot. J Biogeogr 39(9):1695–1706CrossRefGoogle Scholar
  60. White IM, Elson-Harris MM (1992) Fruit flies of economic significance: their identification and bionomics. CAB International, 601pGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Genética e Biologia Molecular – PPGGBM, Depto de Ciências Biológicas – DCBUniv Estadual de Santa Cruz – UESCIlhéusBrasil
  2. 2.Núcleo de Pesquisa da Conservação e Biodiversidade do Semiárido – CONBIOS, Observatorio UNIFG do Semiárido NordestinoCentro Universitário UniFGGuanambiBrasil

Personalised recommendations