Advertisement

Interactions Between the Nematode Heterorhabditis amazonensis JPM4 and the Predator Macrolophus basicornis: Two Natural Enemies of Tuta absoluta Native to South America

  • E. J. Guevara
  • M. PorcelEmail author
  • A. M. Calixto
  • V. D. P. Bueno
  • A. MoinoJr
Biological Control
  • 15 Downloads

Abstract

Entomopathogenic nematodes (EPNs) and predatory mirids are among the most effective natural enemies for the control of Tuta absoluta, a key pest of tomato worldwide. In the case of South America, the native EPN Heterorhabditis amazonensis and the predator Macrolophus basicornis (Stal) coexist in tomato. The intraguild interactions of two ENPs, H. amazonensis JPM4 and the widely used Steinernema carpocapsae, with the predator M. basicornis, were studied in laboratory setups with the objective of evaluating the potential interactions between them. We hypothesized that the two natural enemies do not interact negatively. The first nymphal stage of the predator was not affected when exposed to tomato leaves directly sprayed with both EPNs, which we attributed to the small size of its stylet. Individuals treated with H. amazonensis JPM4 had low mortality rates in all developmental stages with a maximum of 1.3%. Mortality was higher when the predator was exposed to S. carpocapsae (28% for adults) and correlated positively with increasing developmental stages. In prey choice tests between larvae infected with H. amazonensis and uninfected larvae, M. basicornis fed indistinctively showing no clear preference. When presented with choice larvae infected with S. carpocapsae, the consumption of healthy larvae was higher. In a no-choice prey acceptance experiment, M. basicornis preyed on both healthy and infected larvae with no difference in larvae consumed. Predators that had fed from infected larvae did not exhibit signs of nematode infection and survived. Our results indicate that the South American native H. amazonensis JPM4 and M. basicornis do not show a negative interaction and are promising candidates for combined use in T. absoluta biological control.

Keywords

Biological control entomopathogenic nematodes intraguild predation predatory mirid tomato leafminer 

Notes

Acknowledgments

The authors are grateful to the staff of the Insect Pathology and Biological Control Laboratory at the Federal University of Lavras (Brazil) for their technical assistance and two anonymous reviewers for their valuable and constructive comments. We would also like to express our gratitude to the institutions that supported this study, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) in Brazil, and Corporación Colombiana de Investigación Agropecuaria (Agrosavia) in Colombia. The manuscript was proof read by Julia de Raadt.

Author Contributions

AM, VB, EG, and AC conceived the study. EG and AC conducted the experiments. MP and EG analyzed the data. EG and MP wrote the manuscript. Everyone revised and approved the manuscript.

Funding Information

This study was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Corporación Colombiana de Investigación Agropecuaria (Agrosavia).

Compliance with Ethical Standards

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Agusti N, Gabarra R (2009) Development of a mass rearing protocol of the polyphagous predator Dicyphus tamaninii Wagner (Hemiptera: Miridae). Bol Sanidad Veg Plagas 35:205–218 (In Spanish)Google Scholar
  2. Askary TH (2010) Nematodes as biocontrol agents. In: Lichtfouse E (ed) Sociology, Organic farming, climate change and soil science. Springer, Dordrecht, pp 347–378CrossRefGoogle Scholar
  3. Barbara KA, Buss EA (2006) Augmentative applications of Steinernema scapterisci (Nematoda: Steinernematidae) for mole cricket (Orthoptera: Gryllotalpidae) control. Fla Entomol 89:257–262CrossRefGoogle Scholar
  4. Batalla-Carrera L, Morton A, Garcia F (2010) Efficacy of entomopathogenic nematodes against the tomato leafminer Tuta Absoluta in laboratory and greenhouse conditions. Biol Control 55:523–530Google Scholar
  5. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48CrossRefGoogle Scholar
  6. Beaujean AA (2012) BaylorEdPsych: R package for Baylor University Educational Psychology quantitative courses (Version 0.5) [Computer software]. Baylor University, Waco, TXGoogle Scholar
  7. Bueno VHP, van Lenteren JC (2012) Predatory bugs (Heteroptera). In: Panizzi AR, Parra JRP (eds) Insect bioecology and nutrition for integrated pest management. CRC Press, Boca Ratón, pp 539–569CrossRefGoogle Scholar
  8. Bueno V, van Lenteren JC, Lins J, Calixto A, Montes F, Silva D, Santiago L, Perez L (2013) New records of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) predation by Brazilian Hemiptera predatory bugs. J Appl Entomol 137:29–34CrossRefGoogle Scholar
  9. Cabello T, Gallego JR, Vila E, Soler A, del Pino M, Carnero A, Hernández-Suárez E, Polaszek A (2012) Biological control of the South American tomato pinworm. Tuta absoluta (Lep: Gelechiidae), with releases of Trichogramma achaeae (Hym.: Trichogrammatidae) in tomato greenhouses of Spain. IOBC-WPRS Bull 49:225–230 (In Spanish)Google Scholar
  10. Calvo J, Lorente M, Stansly P, Belda J (2012) Preplant release of Nesidiocoris tenuis and supplementary tactics for control of Tuta absoluta and Bemisa tabaci in greenhouse tomato. Entomol Exp Appl 143:111–119CrossRefGoogle Scholar
  11. Chailleux A, Bearez P, Pizzol J, Amiens-Desneux EA, Ramirez R, Desneux N (2013) Potential for combined use of parasitoids and generalist predators for biological control of the key invasive tomato pest Tuta absoluta. J Pest Sci 86:533–554CrossRefGoogle Scholar
  12. Cohen A (1989) Ingestion efficiency and protein consumption by Heteroptera predators. Ann Entomol Soc Am 28:62–70Google Scholar
  13. da Silva A, Souza B, Rodrigues N, Bottega D, Boica RA Jr (2012) Interação tri trófica: Aspectos generais e suas implicações no manejo integrado de pragas. Nucleus 9:35–47 (In Portuguese)CrossRefGoogle Scholar
  14. De Backer L, Caparros-Megido R, Haubruge E, Verheggen FJ (2014) Macrolophus pygmaeus (Rambur) as an efficient predator of the tomato leafminer Tuta absoluta (Meyrick) in Europe. Biotechnol Agron Soc 18:536–543Google Scholar
  15. Desneux N, Wajnberg E, Wyckhuys KAG, Burgio G, Arpala S, Narvaez C, Gonzales J, Ruescas D, Tabone E, Frandon J, Pizzol J, Poncet C, Cabello T, Urbaneja A (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J Pest Sci 83:197–215CrossRefGoogle Scholar
  16. Desneux N, Luna MG, Guillemaud T, Urbaneja A (2011) Potential for direct interference between natural enemies of Tuta absoluta on tomato. Acta Hortic 917:31–37CrossRefGoogle Scholar
  17. Dillon A, Downes M, Ward D, Griffin C (2007) Optimizing application of entomopathogenic nematodes to manage large pine weevil, Hylobius abietis L. (Coleoptera: Curculionidae) populations developing in pine stumps, Pinus sylvestris. Biol Control 40:253–263CrossRefGoogle Scholar
  18. Dutky SR, Thompson JV, Cantwe GEA (1964) A technique for the mass propagation of the DD-136 nematode. J Insect Pathol 6:417–422Google Scholar
  19. Eidt DC, Thurston GS (1995) Physical deterrents to infection by entomopathogenic nematodes in wire worms (Coleoptera: Elateridae) and other soil insects. Can Entomol 127:423–429CrossRefGoogle Scholar
  20. Enkegaard A, Brodsgaard H, Hansen D (2001) Macrolophus caligonosus: functional response to whiteflies and preference and switching capacity between whiteflies and spider mites. Entomol Exp Appl 101:81–88CrossRefGoogle Scholar
  21. Flick AJ, Acevedo MA, Elderd BD (2016) The negative effects of pathogen-infected prey on predators: a meta-analysis. Oikos 125:1554–1560CrossRefGoogle Scholar
  22. Fox J, Weisberg S (2019) An {R} Companion to applied regression, 3rd edn. Sage. URL, Thousand Oaks CA https://socialsciences.mcmaster.ca/jfox/Books/Companion/ Google Scholar
  23. Garcia-del-Pino F, Morton A, Shapiro-Ilan D (2018) Entomopathogenic nematodes as biological control agents of tomato pests. In: Wakil W, Brust GE, Perring T (eds) Sustainable management of arthropod pests of tomato. Academic Press, San Diego, pp 269–282CrossRefGoogle Scholar
  24. Gaugler R (2002) Entomopathogenic Entomology. CABI, New YorkCrossRefGoogle Scholar
  25. Guevara EJ (2014) Evaliacao de nematoides entomopatogenicos (Rhabditida: Steinernematidae e Heterorhaditidae) e interacao com o predador Macrolophus basicornis (Stäl) (Hemiptera: Miridae) no manejo integrado de Tuta absoluta (Meyrick) (Lepidotera: Gelechiidae) en cultivo de Tomate. Doctoral Thesis 121p. Universidade Federal de Lavras, MG, Brasil. (In Portuguese)Google Scholar
  26. Hajek AE, Goettel MS (2000) Guidelines for evaluation of entomopathogens on non-target organisms. In: Lacey LA (ed) Manual of techniques in insect pathology. Springer, San Diego, pp 847–868Google Scholar
  27. Han R, Ehlers RU (2000) Pathogenicity, development, and reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo conditions. J Invertebr Pathol 75:55–58PubMedCrossRefGoogle Scholar
  28. Hazir S, Kaya HK, Stock SP, Keskin N (2003) Entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) for biological control of soil pests. Turk J Nematol 27:181–202Google Scholar
  29. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom 50(3):346–363Google Scholar
  30. Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Annu Rev Entomol 38:181–206CrossRefGoogle Scholar
  31. Lewis EE, Campbell J, Griffin C, Kaya H, Peters A (2006) Behavioral ecology of entomopathogenic nematodes. Biol Control 38:66–79CrossRefGoogle Scholar
  32. Melo MC, Dellapé PM, Carpintero DL, Coscarón MC (2004) Reduviidae, Miridae y Lygaeoidea (Hemiptera) recolectados en Colonia Carlos Pellegrini (Esteros de Iberá, Corrientes, Argentina). Rev Soc Entomol Argent 63:1–2 (In Spanish)Google Scholar
  33. Montes F (2013) Características biológicas dos estágios imaturos de três predadores (Hem: Miridae) alimentados com ovos de Anagasta kuehniella (Zeller) (Lep.:Pyralidae) em cinco temperaturas. Master Thesis, Universiadade de Lavras, Brazil (In Portuguese)Google Scholar
  34. Nicholls CI (2008) Control biológico de insectos: un enfoque agroecológico, 1st edn. Editorial Universidad de Antioquia, Medellin (In Spanish)Google Scholar
  35. Orozco RA, Lee MM, Stock SP (2014) Soil sampling and isolation of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae). J Vis Exp 89:1–8Google Scholar
  36. Parra JRP (1998) Raising insects for studies of pathogens. In: Alves SB (ed) Microbial control of insects Volumen I. FEALQ, Piracicaba, Brazil., pp 1015–1037Google Scholar
  37. Perdikis D, Fantinou A, Lykouressis D (2011) Enhancing pest control in annual crops by conservation of predatory Heteroptera. Biol Control 59:13–21CrossRefGoogle Scholar
  38. Ramos MN, Guevara EJ, Soares F, Moino A Jr (2015) Effects of entomopathogenic nematodes on the predator Calosoma granulatum in the laboratory. J Insect Behav 28:1–18CrossRefGoogle Scholar
  39. Reitan T, Nielsen A (2016) Do not divide count data with count data; a story from pollination ecology with implications beyond. PLoS One 11:e0149129PubMedPubMedCentralCrossRefGoogle Scholar
  40. Sánchez J, La Spina M, Perrera O (2012) Analysis of the population structure of Macrolophus pygmaeus (Rambur) (Hemiptera: Miridae) in the Palaearctic region using microsatellite markers. Ecol Evol 2:3145–3159PubMedPubMedCentralCrossRefGoogle Scholar
  41. Shapiro-Ilan D, Han R, Dolinski C (2012) Entomopathogenic nematode production and application technology. J Nematol 44:206–217PubMedPubMedCentralGoogle Scholar
  42. Sher RB, Parrella MP, Kaya HK (2000) Biological control of the leafminer Liriomyza trifolii (Burgess): implications for intraguild predation between Diglyphus begini Ashmead and Steinernema carpocapsae (Weiser). Biol Control 17:155–163CrossRefGoogle Scholar
  43. Silva D, Bueno V, Calvo F, Van Lenteren J (2017) Do nymphs and adults of three Neotropical zoophytophagous mirids damage leaves and fruits of tomato? B Entomol Res 107:200–207CrossRefGoogle Scholar
  44. Toepfer S, Hatala-Zseller I, Ehlers RU, Peters A, Kuhlmann U (2010) The effect of application techniques on field-scale efficacy: can the use of entomopathogenic nematodes reduce damage by western corn rootworm larvae? Agric For Entomol 12:389–402CrossRefGoogle Scholar
  45. Urbaneja A, Montón H, Mollá O (2009) Suitability of the tomato borer Tuta absoluta as prey for Macrolophus caliginosus and Nesidiocoris tenuis. J Appl Entomol 133:292–296CrossRefGoogle Scholar
  46. Verhoeven KJF, Simonsen KL, McIntyre LM (2005) Implementing false discovery rate control: increasing your power. Oikos 108:643–647CrossRefGoogle Scholar
  47. Woodring JL, Kaya HK (1998) Steinernematid and Heterorhabditid nematodes: hand book of biology and techniques. Arkansas Agricultural Experimental Station, Fayetteville Southern Cooperative. Ser Bull 331:1–30Google Scholar
  48. Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2019

Authors and Affiliations

  1. 1.Corporación Colombiana de Investigación Agropecuaria (Agrosavia)Centro de Investigación La LibertadMetaColombia
  2. 2.Dept of EntomologyUniv Federal de LavrasLavrasBrasil

Personalised recommendations