Advertisement

Natural Vs Managed Habitat: Effect Over the Seed-Predator Pachymerus nucleorum and Its Natural Enemies

  • J O S SilvaEmail author
  • M L E Costa
  • B S Paixão
  • J D B Macêdo
  • P M S Rodrigues
  • E M F Lins-Neto
Pest Management
  • 24 Downloads

Abstract

The licuri palm, Syagrus coronata (Martius) Beccari (Arecaceae), is widely distributed throughout the Brazilian Caatinga and has high cultural, socioeconomical, and ecological importance. The palm tree logging is prohibited by the Brazilian law, and thus isolated individuals are a common sight on managed pastures in the Brazilian semi-arid region. We aimed to compare the insect seed-predator Pachymerus nucleorum (Fabricius) (Bruchinae) abundance and its predation levels on S. coronata seeds between managed (pasture) and natural (Caatinga vegetation) habitats. We also monitored the parasitoid Heterospilus prosopodis (Viereck) (Braconidae) abundance and other P. nucleorum potential natural enemies (generalist predators and microhymenopterans). We tested the hypothesis that more complex and heterogenous habitats (i.e., with higher plant diversity) support higher abundance of potential P. nucleorum natural enemies. For such, we collected 600 fruits from each habitat and evaluated the seed predation level by P. nucleorum, as well as the P. nucleorum parasitism by H. prosopodis. The P. nucleorum abundance and its potential natural enemies were estimated using 122 sticky traps placed on the S. coronata individuals’ crown. Neither the P. nucleorum and generalist predators abundance differed between habitats, whereas the H. prosopodis and microhymenopterans abundance was higher in the natural habitat. Consequently, P. nucleorum parasitism levels by H. prosopodis were also higher in the natural habitat. Our study indicated that habitat with higher plant diversity supported more natural enemies, thus confirming that increased habitat homogenization leads to decreased parasitism levels by the less parasitoids number in managed habitats. Our results may subsidize conservationist management practices in the managed habitats aiming to improve fruit exploitation techniques sustainability and land-use practices, which would thereafter allow for the S. coronata population conservation in the Brazilian Caatinga.

Keywords

Caatinga palm tree parasitoid sustainability tritrophic interaction 

Notes

Acknowledgements

We thank MV Morgado, ML Júnior, and CJ Pereira for field assistance. Finally, we thank the laboratory Núcleo de Ecologia e Conservação da Caatinga—NECC and Microbiology from UNIVASF for all the physical structure and logistical support. We thank Cibele Stramare Ribeiro Costa of the Laboratory of Systematic and Bioecology of Coleoptera (Insecta) of the Federal University of Paraná by Bruchinae beetle identification, and André Nascimento of the Universidade Estadual de Campinas-UNICAMP for the support in the H. prosopodis parasitoid identification.

Author’s Contribution

JOS, MLEC, PMSR, and EMFLS planned the research; MLEC, JOS, BSP, and JSBM conducted samplings; JOS, MLEC, and PMRS analyzed data and conducted statistical analyses; JOS, MLEC, PMRS, JSBM, and EMFLS wrote the manuscript; and JOS, PMRS, and BSP read, suggest, and approved the manuscript during revision.

Funding Information

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

References

  1. Altieri MA (2002) Agroecology: the science of natural resource management for poor farmers in marginal environments. Agric Ecosyst Environ 93:1–24CrossRefGoogle Scholar
  2. Alves VP, Santos DB, Silva APS (2014) Análise dos recursos hídricos no assentamento Jiboia, município de Senhor do Bonfim-BA. Rev Ouricuri 4:1–31Google Scholar
  3. Andrade MB, Esteves-Filho AB, Siqueira ITD, Giorgi JA (2013) Registro de Pachymerus nucleorum (Fabricius) (Coleoptera, Chrysomelidae, Bruchinae) predando sementes de Licuri em Caetés, Pernambuco, Brasil. Entomo Brasilis 6:239–241CrossRefGoogle Scholar
  4. Andrade WM, Ramos MA, Souto WMS, Bento-Silva JS, Albuquerque UP, Araújo EL (2015) Knowledge, uses and practices of the licuri palm (Syagrus coronata (Mart.) Becc.) around protected areas in northeastern Brazil holding the endangered species Lear’s Macaw (Anodorhynchus leari) the northeast Brazil. Trop Conserv Sci 8:893–911CrossRefGoogle Scholar
  5. Aroucha EPTL, Aroucha ML (2013) Boas práticas de manejo para o extrativismo sustentável do licuri. Instituto Sociedade, População e Natureza. Brasília, p 92Google Scholar
  6. Barbosa CM (2016) Atributos florais e reprodutivos de Syagrus coronata (Mart) Becc. Como ferramentas para a conservação de uma palmeira endêmica do Brasil. Dissertation – Biologia Vegetal, Universidade Federal de Pernambuco, Recife, p 66.Google Scholar
  7. Begg GS, Cook SM, Dye R, Ferrante M, Franck P, Lavigne C, Lövei GL, Mansion-Vaquie A, Pell JK, Petit S, Quesada N, Ricci B, Wratten SD, Birch ANE (2017) A functional overview of conservation biological control. Crop Prot 97:145–158CrossRefGoogle Scholar
  8. Brévault T, Clouvel P (2019) Pest management: reconciling farming practices and natural regulations. Crop Prot 11:1–6CrossRefGoogle Scholar
  9. Diebel J, Norda J (2013) Weatherspark, Cedar lake ventures Inc. http://weatherspark.com/ Accessed 05 Jun 2019.
  10. Drumond MA (2007) Licuri Syagrus coronata (Mart.) Becc. Embrapa-Semiárido, Petrolina, p 16Google Scholar
  11. Galetti M, Bovendorp RS, Guevara R (2015) Defaunation of large mammals leads to an increase in seed predation in the Atlantic forests. Glob Ecol Conserv 3:824–830CrossRefGoogle Scholar
  12. Garcia AH, Rosa JAM, Costa MGG (1980) Contribuição ao conhecimento do ataque de Pachymerus nucleorum Fabr., 1792 (Bruchidae: Coleoptera) em Syagrus oleraceae Mart. (Palmae). Anais Esco Agro Vet 10:5–11Google Scholar
  13. Gibinski R, Krupek RA (2016) Influência de diferentes fatores sobre a predação de sementes de Araucaria angustifolia (Bertol.) O. Kuntze. Acta Biol Catarinense 3:60–68Google Scholar
  14. Giroldo AB, Scariot A (2015) Land use and management affects the demography and conservation of an intensively harvested Cerrado fruit tree species. Biol Conserv 191:150–158CrossRefGoogle Scholar
  15. Grenha VMMV, Macdedo MV, Monteiro RF (2008) Predação de sementes de Allagoptera arenaria (Gomes) O’ Kuntze (Arecaceae) por Pachymerus nucleorum Fabricius. (Coleoptera, Chrysomelidae, Bruchinae). Rev Bras Entomol 52:50–56CrossRefGoogle Scholar
  16. Haddad NM, Crutsinger GM, Gross K, Haarstad J, Knops JM, Tilman D (2009) Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol Lett 12:1029–1039CrossRefGoogle Scholar
  17. IBAMA (2008) Instrução Normativa n° 191. http://www.ibama.gov.br/ Accessed 20 Feb 2016.
  18. Klein AM, Steffan-Dewenter I, Buchori D, Tscharntke T (2002) Effects of land-use intensity in tropical agroforestry systems on flower-visiting and trap-nesting bees and wasps. Conserv Biol 16:1003–1014CrossRefGoogle Scholar
  19. Lorenzi H, Souza HM, Cerqueira LSC, Costa JTM, Ferreira E (2004) Palmeiras brasileiras e exóticas cultivadas. Nova Odessa: Instituto Plantarum v.1, São Paulo, p 416.Google Scholar
  20. Maia DP (2013) Interação tritrófica entre Pachymerus cardo (Fåhraeus), Pachymerus Nucleorum (Coleoptera, Chrysomelidae, Bruchinae) e seus parasitoides em populações de Syagrus romanzoffiana (Cham.) Glassman (Arecaceae). Dissertation - Parasitologia, Universidade Estadual de Campinas, Campinas, p 50.Google Scholar
  21. McCullagh P, Nelder JA (1989) Generalized linear models (2ed.). Chapman and Hall, New York, p 511CrossRefGoogle Scholar
  22. Medeiros BASD, Núñez-Avellaneda LA, Hernandez AM, Farrell BD (2019) Flower visitors of the licuri palm (Syagrus coronata): brood pollinators coexist with a diverse community of antagonists and mutualists. Biol J Linn Soc 126:666–687CrossRefGoogle Scholar
  23. Moura JIL, Grenha G, Pinto SS, Tavares AM (2009) Danos causados por Pachymerus nucleorum (Coleoptera: Chrysomelidae) a sementes de dendezeiro. Agrotrópica 21:205–206Google Scholar
  24. Noblick LR (2017) A revision of the genus Syagrus (Arecaceae). Phytotaxa 294:001–262CrossRefGoogle Scholar
  25. Novais SMA, Macedo-Reis LE, DaRocha WD, Neves FS (2016) Effects of habitat management on different feeding guilds of herbivorous insects in cacao agroforestry systems. Int J Trop Biol Conserv 64:763–777Google Scholar
  26. Novais SMA, Macedo-Reis LE, Neves FS (2017) Predatory beetles in cacao agroforestry systems in Brazilian Atlantic forest: a test of the natural enemy hypothesis. Agrofor Syst 91:201–209CrossRefGoogle Scholar
  27. Peach DAH, Gries R, Zhai H, Young N, Gries G (2019) Multimodal floral cues guide mosquitoes to tansy inflorescences. Sci Rep 9:3908CrossRefGoogle Scholar
  28. Pereira, CJ (2019) Consequências de distúrbio do habitat sobre o destino de sementes e demografia populacional do licuri (Syagrus coronata) no semiárido baiano. Dissertation - Ecologia e Evolução, Universidade Estadual de Feira de Santana, Feira de Santana, p 49.Google Scholar
  29. R Development Core Team (2016) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna http://www.R-project.org Accessed 27 Nov 2016Google Scholar
  30. Raguso AR, Willis MA (2005) Synergy between visual and olfactory cues in nectar feeding by wild hawkmoths, Manduca sexta. Anim Behav 69:407–418CrossRefGoogle Scholar
  31. Ramalho CI (2006) Licuri (Syagrus coronata). http://wwwccaufpbbr/lavouraxerofila/pdf/licuripdf Accessed (05 Aug 2018)Google Scholar
  32. Ramalho CI (2008) Estrutura da vegetação e distribuição espacial do licuri (Syagrus coronata (Mart.) Becc) em dois municípios do centro norte da Bahia, Brasil. PhD thesis- Agronomia, Universidade Federal da Paraíba, Areia, p 131.Google Scholar
  33. Rocha KMR (2009) Biologia reprodutiva da palmeira Licuri (Syagrus coronata (Mart.) (Becc.) (Arecaeae) na ecoregião do Raso da Catarina, Bahia. Dissertation - Ciências Florestais, Universidade Federal Rural de Pernambuco, Recife, p 98.Google Scholar
  34. Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124CrossRefGoogle Scholar
  35. Sá D, Scariot A, Ferreira JB (2018) Effects of ecological and anthropogenic factors on population demography of the harvested Butia capitata palm in the Brazilian Cerrado. Biodivers Conserv.  https://doi.org/10.1007/s10531-018-1669-9 Accessed 18 Dec 2018
  36. Silva JO, Oliveira KN, Santos KJ, Espírito-Santo MM, Neves FS, Faria ML (2010) Efeito da estrutura da paisagem e do genótipo de Eucalyptus na abundância e controle biológico de Glycaspis brimblecombei Moore (Hemiptera: Psyllidae). Neotrop Entomol 39:91–96CrossRefGoogle Scholar
  37. Silva JMC, Leal IR, Tabarelli M (2017) Caatinga the largest tropical dry forest region in South America. Springer International Publishing, Cham, p 482Google Scholar
  38. Sperber CF, Kakayama K, Valverde MJ, Neves FS (2004) Tree species richness and density affect parasitoid diversity in cacao agroforestry. Basic Appl Ecol 5:241–251CrossRefGoogle Scholar
  39. Togni PHB, Venzon M, Souza LM, Santos JPCR, Sujii ER (2019) Biodiversity provides whitefly biological control based on farm management. J Pest Sci 92:393–403CrossRefGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2019

Authors and Affiliations

  1. 1.Colegiado de EcologiaUniversidade Federal do Vale do São Francisco (UNIVASF)Senhor do BonfimBrasil
  2. 2.Programa de Pós-Graduação em Ciências da Saúde e Biológicas – PPGCSBUniversidade Federal do Vale do São Francisco (UNIVASF)Senhor do BonfimBrasil
  3. 3.Programa de Pós-Graduação em Ecologia e EvoluçãoUniversidade Estadual de Feira de Santana, Feira de Santana (UEFS)Feira de SantanaBrasil
  4. 4.Ciência e Tecnologia Baiano CampusInstituto Federal de EducaçãoSenhor do BonfimBrasil

Personalised recommendations