Advertisement

Manipulation of Agricultural Habitats to Improve Conservation Biological Control in South America

  • A. Peñalver-CruzEmail author
  • J. K. Alvarez-Baca
  • A. Alfaro-Tapia
  • L. Gontijo
  • B. LavanderoEmail author
Forum Section
  • 52 Downloads

Abstract

Stable and diversified agroecosystems provide farmers with important ecosystem services, which are unfortunately being lost at an alarming rate under the current conventional agriculture framework. Nevertheless, this concern can be tackled by using ecological intensification as an alternative strategy to recuperate ecosystem services (e.g., biological control of pests). To this end, the manipulation of agricultural habitats to enhance natural enemy conservation has been widely explored and reported in Western Europe and North America, whereas in other parts of the world, the investigation of such topic is lagging behind (e.g., South America). In this forum, we gathered published and unpublished information on the different ecological habitat management strategies that have been implemented in South America and their effects on pest control. Additionally, we identify the various challenges and analyze the outlook for the science of conservation biological control in South America. More specifically, we reviewed how different agricultural practices and habitat manipulation in South America have influenced pest management through natural enemy conservation. The main habitat manipulations reported include plant diversification (intercropping, insectary plants, agroforestry), conservation and management of non-crop vegetation, and application of artificial foods. Overall, we noticed that there is a significant discrepancy in the amount of research on conservation biological control among South American countries, and we found that, although intercropping, polycultures, and crop rotation have been reported in agroecosystems since pre-Inca times, more systematic studies are required to evaluate the true effects of habitat management to implement conservation biological control for pest control in South America.

Keywords

Ecosystem services agroecosystems agricultural diversification natural enemies intercropping 

Notes

Acknowledgments

The authors are grateful to the researchers, farmers, and agronomy advisors who provided information about conservation biological control in the different countries of South America.

Author Contribution Statement

APC, JKAB, AAT, LG, and BL drafted the manuscript and searched for studies in the different regions. All authors have read and approved the manuscript.

Funding Information

BL was funded by the Fondo Nacional de Desarrollo Científico y Tecnológico (Fondecyt) Regular Grant N°1140632, and LG was funded by the “Fundação de Amparo a Pesquisa do Estado de Minas Gerais”—FAPEMIG (grant FORTIS-TCT-10254/2014). In addition, JKAB was funded by the CONICYT PFCHA/BECAS DE DOCTORADO NACIONAL/2018—21181816, and AAT received a doctoral grant from the Talca University (Chile).

Supplementary material

13744_2019_725_MOESM1_ESM.xlsx (21 kb)
ESM 1 (XLSX 21 kb)

References

  1. Adler LS (2000) The ecological significance of toxic nectar. Oikos 91:409–420CrossRefGoogle Scholar
  2. Aguilar Fernandez PG, Angeles Riva IM (1992) Control biológico, control integrado de plagas y artrópodos benéficos: Lista de los trabajos publicados por la Sociedad Entomológica del Perú durante 1958 a 1992. Rev Peru Entomol 35:156–156Google Scholar
  3. Alfaro-Tapia A (2010) Efecto de la cubierta vegetal en maíz (Zea mays L.) sobre las poblaciones de insectos plaga y sus enemigos naturales. Universidad Nacional de San Antonio Abad del CuscoGoogle Scholar
  4. Almanda M (2016) Evaluación de insecticidas orgánicos para el control de Picudo del algodón. Voces Ecos 35:18–19Google Scholar
  5. Altieri MA (1991) How best can we use biodiversity in agroecosystems? Outlook Agric 20:15–23.  https://doi.org/10.1177/003072709102000105 CrossRefGoogle Scholar
  6. Altieri MA (1993) Ethnoscience and biodiversity: key elements in the design of sustainable pest management systems for small farmers in developing countries. Agric Ecosyst Environ 46:257–272.  https://doi.org/10.1016/0167-8809(93)90029-O CrossRefGoogle Scholar
  7. Altieri M, Trujillo J, Campos L, Klein-Koch C, Gold CS, Quezada JR (1989) El control biológico clásico en América Latina en su contecto historico. Manejo Integrado de Plagas, Costa Rica 12:82–107Google Scholar
  8. Amaral DS, Venzon M, Pallini A, Lima PC, Souza O (2010) A Diversificação da Vegetação Reduz o ataque do bicho-mineiro-do-cafeeiro Leucoptera coffeella (Guérin-Mèneville) (Lepidoptera: Lyonetiidae)? Neotrop Entomol 39(4):1–6CrossRefGoogle Scholar
  9. Amaral DSSL, Venzon M, Duarte MVA, Sousa FF, Pallini A, Harwood JD (2013) Non-crop vegetation associated with chili pepper agroecosystems promote the abundance and survival of aphid predators. Biol Control 64:338–346CrossRefGoogle Scholar
  10. Amaral DSSL, Venzon M, Santos HH, Sujii ER, Schmidt JM, Harwood JD (2016) Non-crop plant communities conserve spider populations in chili pepper agroecosystems. Biol Control 103:69–77CrossRefGoogle Scholar
  11. Andorno AV, López SN (2014) Biological control of Myzus persicae (Hemiptera: Aphididae) through banker plant system in protected crops. Biol Control 78:9–14.  https://doi.org/10.1016/j.biocontrol.2014.07.003 CrossRefGoogle Scholar
  12. Andrade KA, Aguiar-Menezes EL, Gonçalves-Esteves V, Mendonça CBF, Vieira GRM, Melo SJ, Magalhães JLA, Melo GJB (2018) Pollen ingestion by Chrysoperla externa (Hagen) adults in a diversified organic agroecosystem. Neotrop Entomol 47:118–130PubMedCrossRefGoogle Scholar
  13. Andrews KL (1988) Latin American research on Spodoptera frugiperda (Lepidoptera: Noctuidae). Florida Entomol 71:630.  https://doi.org/10.2307/3495022 CrossRefGoogle Scholar
  14. Aranguiz-Arce IP (2005) Efecto de la liberación inundativa de enemigos naturales sobre Pseudococcus viburni, su asociación a ataque de Botrytis cinerea en racimos de Vitis vinifera cv. Merlot e identificación de presencia de enemigos naturales en corredores biológicos. Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, ChileGoogle Scholar
  15. Argumedo A (2008) The Potato Park, Peru: conserving agrobiodiversity in an Andean indigenous biocultural heritage area. In: Amend T, Brown J, Kothari A, Phillips A, Stolton S (eds) Protected landscapes and agrobiodiversity values. Kasparek Verlag, HeidelbergGoogle Scholar
  16. Arias R (2009) Evaluación de la Virulencia y patogenicidad del hongo (Beauveria bassiana) sobre la Broca del Café (Hyphothenemus hampei) en laboratorio. Universidad Mayor de San Andrés, La PazGoogle Scholar
  17. Aristizábal LF, Cardona LV, Henao ER, Salgado M, Arthurs SP (2013) Insects associated with tropical foliage produced in the coffee growing region of Colombia. Rev Bras Entomol 57:313–318.  https://doi.org/10.1590/S0085-56262013005000021 CrossRefGoogle Scholar
  18. Armbrecht I, Perfecto I, Vandermeer J (2004) Enigmatic biodiversity correlations: ant diversity responds to diverse resources. Science 304:284–286.  https://doi.org/10.1126/science.1094981 PubMedCrossRefGoogle Scholar
  19. Armbrecht I, Gallego MC (2007) Testing ant predation on the coffee berry borer in shaded and sun coffee plantations in Colombia. Entomol Exp Appl 124:261–267.  https://doi.org/10.1111/j.1570-7458.2007.00574.x CrossRefGoogle Scholar
  20. Barbosa FS, Aguiar-Menezes AL, Arruda LN, Santos CLR, Pereira MB (2011) Potential of the flowers in the optimization of the biological control of pests for a sustainable agriculture. Rev Bras Agroecol 6(2):101–110Google Scholar
  21. Basso C, Pintureau B (2004) Las especies de Trichogramma de Uruguay (Hymenoptera: Trichogrammatidae). Rev Soc Entomol Argent 63:71–80Google Scholar
  22. Basso C, Grille G, Pintureau B (1999) Eficacia de Trichograma exiguum Pinto & Platner, y T.pretiosum Riley, en el control de Argyrotaenia sphaleropa (Meyrick) y Bonagota cranaodes (Meyrick) en la Vid en Uruguay. Agrociencia 3:20–26Google Scholar
  23. Beckford CL, Rhiney K (2016) Geographies of globalization, climate change and food and agriculture in the Caribbean. In: Globalization, agriculture and food in the Caribbean. Palgrave Macmillan UK, London, pp 3–22.  https://doi.org/10.1057/978-1-137-53837-6_1 CrossRefGoogle Scholar
  24. Bedoya A, Fernández-Herrera C, Pérez-García KD (2018) Diversidad de la entomofauna asociada a vegetación aledaña a cultivos de arroz, maíz y algodón. Entomofauna diversity associated to surrounding vegetation on rice, corn and cotton crops. Temas Agrarios 23:107–120CrossRefGoogle Scholar
  25. Begum M, Gurr GM, Wratten SD, Hedberg PR, Nicol HI (2006) Using selective food plants to maximize biological control of vineyard pests. J Appl Ecol 43:547–554.  https://doi.org/10.1111/j.1365-2664.2006.01168.x CrossRefGoogle Scholar
  26. Beingolea O (1990) Sinopsis sobre el control biológico de plagas insectiles en el Perú. Rev Peru Entomol 33:105–112Google Scholar
  27. Beingolea O (1993) Ejemplos de control biológico y manejo integrado de plagas de frutales en el Perú. Rev Peru Entomol 36:1–4Google Scholar
  28. Bellotti A, van Schoonhoven A (1978) Mite and insect pests. Annu Rev Entomol 23:39–67PubMedCrossRefGoogle Scholar
  29. Bellotti A, Smith L, Lapointe A (1999) Recent advances in cassava pest management. Annu Rev Entomol 44:343–370PubMedCrossRefGoogle Scholar
  30. Bellows TS, Fisher T (1999) Handbook of biological control. Academic, LondonGoogle Scholar
  31. Benitez E, Colman M (2014) Primera cita para Paraguay de Psyllaephagus bliteus Riek (Hymenoptera: Encyrtidae), parasitoide de Glycaspis brimblecombei Moore (Hemiptera: Psyllidae). Bol Mus Hist Nat Paraguay 18:125–128Google Scholar
  32. Benítez-Díaz EA (2015) Enemigos Naturales de orugas de la Soja, Canola y Nabo. SENAVE (Servicio Nacional de Calidad y Sanidad Vegetal y de Semillas), Dirección de laboratorios DLSVBM, San Lorenzo, ParaguayGoogle Scholar
  33. Bennet FD, Squire FA (1972) Investigations on the biological control of some insect pests in Bolivia. PANS Pest Artic News Summ 18:459–467.  https://doi.org/10.1080/09670877209412707 CrossRefGoogle Scholar
  34. Berryman AA, Hawkins BA (2006) The refuge as an integrating concept in ecology and evolution. Oikos 115:192–196CrossRefGoogle Scholar
  35. Bianchi FJJ, Booij CJ, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B Biol Sci 273:1715–1727.  https://doi.org/10.1098/rspb.2006.3530 CrossRefGoogle Scholar
  36. Biodiversity Information System in Colombia (SiB) (2019) https://sibcolombia.net/actualidad/biodiversidad-en-cifras/. Accessed 2 May 2019
  37. Boivin G, Brodeur J (2006) Intra- and interspecific interactions among parasitoids: mechanisms, outcomes and biological control. In: Brodeur J, Boivin G (eds) Trophic guild in biological interactions control. Progress in biological control, vol 3. Springer, DordrechtGoogle Scholar
  38. Bojanic AJ (2001) Extension, poverty and vulnerability in Bolivia. In: ODI, extension, poverty and vulnerability in Bolivia and Colombia. Country Studies for the Neuchatel InitiativeGoogle Scholar
  39. Brack A (1986) Ecología de un país complejo. In: Dourojeanni MJ, Mejía Baca J (eds) Gran Geografía Del Perú. Naturaleza y Hombre, Spain, pp 175–319Google Scholar
  40. Buainain A, Garcia R (2015) Recent development patterns and challenges of Brazilian agriculture. In: Shome P, Sharma P (eds) Emerging economies. Springer, New Delhi, pp 41–66Google Scholar
  41. Buenahora J, Rubio L (2009) Control biológico clásico en Uruguay. In: El minador de la hoja de los cítricos, Phyllocnistis citrella (Lepidoptera: Gracillariidae): Bioecología y control biológico. INIA, Montevideo, Uruguay, pp 45–61Google Scholar
  42. Bustillo (2011) Parasitoides, predadores y entomopatógenos que afectan las plagas de la caña de azúcar en Colombia. Centro de Investigación de la Caña de Azúcar de Colombia, Santiago de Cali, p 25Google Scholar
  43. Bustillo AE, Cárdenas R, Posada FJ (2002) Natural enemies and competitors of Hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae) in Colombia. Neotrop Entomol 31:635–639.  https://doi.org/10.1590/S1519-566X2002000400018 CrossRefGoogle Scholar
  44. Butinof M, Fernández R, Lantieri M, Stimolo MI, Blanco M, Machado AL, Franchini G, Gieco M, Portilla M, Eandi M, Sastre A, Diaz MP (2015) Pesticides and agricultural work environment in Argentina. IntechOpen, pp 105–134.  https://doi.org/10.5772/57178 Google Scholar
  45. Calamari NC, Canavelli SB, Cerezo A, Dardanelli S, Bernardos JN, Zaccagnini ME (2018) Variations in pest bird density in Argentinean agroecosystems in relation to land use and/or cover, vegetation productivity and climate. Wildl Res 45:668–678.  https://doi.org/10.1071/WR17167 CrossRefGoogle Scholar
  46. Calle W (2013) Control biológico como estrategia de manejo contra la Broca del Café (Hypothenemus hampei Ferrari) con la microavispa (Cephalonomia stephanoderis Betrem) y el hongo entomopatógeno (Beauveria bassiana Balsamo), en Los Yungas del Departamento de La Paz. Universidad Mayor de San Andrés, La Paz, BoliviaGoogle Scholar
  47. Campagnolla C, de Moraes GJ, de Sa LAN (1995) Review of IPM in South America. In: Mengech A, Saxena K, Gopalan HN (eds) Integrated pest management in the tropics: current status and future prospects. Wiley, Chichester, pp 121–152Google Scholar
  48. Cañedo V, Rojas J, Alvarado J, Kroschel J (2010) Efecto de la composición del paisaje sobre las plagas y enemigos naturales de la papa en la sierra central del Perú. In: ALAP (ed) XXIV Congress of the Latin-American Potato Association (ALAP). Cusco-Perú, pp 300–301Google Scholar
  49. Cañedo V, Alfaro A, Kroschel J (2011) Manejo integrado de plagas de insectos en hortalizas: Principios y referencias técnicas para la Sierra Central de Perú. International Potato Center (CIP)Google Scholar
  50. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67.  https://doi.org/10.1038/nature11148 CrossRefPubMedGoogle Scholar
  51. Carneiro FF, Pignati W, Rigotto RM, Augusto LGS, Rizollo A, Muller NM, Alexandre VP, Friedrich K, Mello MSC (2015) Dossiê ABRASCO—Um alerta sobre os impactos dos agrotóxicos na saúde. Associação Brasileira de Saúde Coletiva, Rio de Janeiro, p 623Google Scholar
  52. Carter MC, Dixon AFG (1984) Honeydew: an arrestant stimulus for coccinellids. Ecol Entomol 9:383–387.  https://doi.org/10.1111/j.1365-2311.1984.tb00834.x CrossRefGoogle Scholar
  53. Castaño O, Bellotti A, Vargas H (1985) Efecto de HCN y de cultivos intercalados sobre daño causado por la chinche de la viruela Cyrtomenus bergi Froeschner al cultivo de la yuca. Rev Colomb Entomol 11:24–26Google Scholar
  54. Castresana J, Rosenbaum J, Gagliano E (n.d.) Transición del manejo de plagas convencional hacia el agroecológico mediante la transferencia de técnicas de control integrado de plagas en tomate bajo cubierta en Concordia—Provincia de Entre RíosGoogle Scholar
  55. Cave RD (2000) Biology, ecology and use in pest management of Telenomus remus. Biocontrol News Inf 21:21–26Google Scholar
  56. Chaplin-Kramer R, Rourke M, Blitzer E, Kremen C (2011) A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett 14:922–932PubMedCrossRefGoogle Scholar
  57. Chavez Y, Chirinos DT, González G, Lemos N, Fuentes A, Castro R, Kondo T (2017) Tamarixia radiata (Waterston) and Cheilomenes sexmaculata (Fabricius) as biological control agents of Diaphorina citri Kuwayama in Ecuador. Chil J Agric Res 77:180–184.  https://doi.org/10.4067/s0718-58392017000200180 CrossRefGoogle Scholar
  58. Choquetarqui D, Almanza L, Loza-Murguia M (2011) Selección de tres cepas criollas de Beauveria bassiana (Balsamo) Vuillemin como alternativa para el control biológico de la broca de café, Hypothenemus hampei (Ferrari 1867) (Coleoptera : Scolytidae) a diferentes temperaturas. J Selva Andin Res Soc 2:17–25Google Scholar
  59. Cock M (2016) The impacts of some classical biological control successes. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources.  https://doi.org/10.1079/pavsnnr201510042
  60. Cohela M d R (2009) Efectividad del entomopatógeno (Beauveria bassiana) en el control de la Broca del café (Hypothenemus hampei) en condiciones de campo en el Municipio de Caranavi. Universidad Mayor de San Andrés. La Paz, BoliviaGoogle Scholar
  61. Conde JR (2011) Efecto de entomopatógenos en el control de Erinnyis ello, (Lepidoptera: Sphingidae) en cultivo de Yuca (Manihot esculenta C.) en El Municipio de Palos Blancos, Departamento de La Paz. Universidad Mayor de San Andrés, La Paz, BoliviaGoogle Scholar
  62. Corbett A, Plant RE (1993) Role of movement in the response of natural enemies to agroecosystem diversification: a theoretical evaluation. Environ Entomol 22:519–531.  https://doi.org/10.1093/ee/22.3.519 CrossRefGoogle Scholar
  63. Cromartie WJ Jr (1981) The environmental control of insects using crop diversity. In: Pimentel D (ed) Handbook of pest management in agriculture. CRC, Boca Raton, FL, pp 223–251Google Scholar
  64. Crowder DW, Northfield TD, Strand MR, Snyder WE (2010) Organic agriculture promotes evenness and natural pest control. Nature 466:109–112.  https://doi.org/10.1038/nature09183 CrossRefPubMedGoogle Scholar
  65. Da Rosa MG, Santos JCP, Brescovit AD, Mafra AL, Baretta D (2018) Spiders (Arachnida: Araneae) in agricultural land use systems in subtropical environments. Rev Bras Cienc Solo 42:e0160576.  https://doi.org/10.1590/18069657rbcs20160576 CrossRefGoogle Scholar
  66. Dainese M, Martin EA, Aizen MA, Albrecht M, Bartomeus I, Bommarco R, Carvalheiro LG, Chaplin-Kramer R, Gagic V, Garibaldi LA, Ghazoul J, Grab H, Jonsson M, Karp DS, Kennedy CM, Kleijn D, Kremen C, Landis DA, Letourneau DK, Marini L, Poveda K, Rader R, Smith HG, Tscharntke T, Andersson GKS, Badenhausser I, Baensch S, Bezerra ADM, Bianchi FJJA, Boreux V, Bretagnolle V, Caballero-Lopez B, Cavigliasso P, Ćetković A, Chacoff NP, Classen A, Cusser S, da Silva e Silva FD, Arjen de Groot G, Dudenhöffer JH, Ekroos J, Fijen T, Franck P, Freitas BM, MPD G, Gratton C, Hipólito J, Holzschuh A, Hunt L, Iverson AL, Jha S, Keasar T, Kim TN, Kishinevsky M, Klatt BK, Klein AM, Krewenka KM, Krishnan S, Larsen AE, Lavigne C, Liere H, Maas B, Mallinger RE, Martinez-Pachon E, Martínez-Salinas A, Meehan TD, MGE M, Molina GAR, Nesper M, Nilsson L, O´Rourke ME, Peters MK, Plećaš M, Potts SG, Ramos DL, Rosenheim JA, Rundlöf M, Rusch A, Sáez A, Scheper J, Schleuning M, Schmack J, Sciligo AR, Seymour C, Stanley DA, Stewart R, Stout JC, Sutter L, Takada MB, Taki H, Tamburini G, Tschumi M, Viana BF, Westphal C, Willcox BK, Wratten SD, Yoshioka A, Zaragoza-Trello C, Zhang W, Zou Y, Steffan-Dewenter I (2019) A global synthesis reveals biodiversity-mediated benefits for crop production. bioRxiv:1–19.  https://doi.org/10.1101/554170
  67. Dantas JO, Santo MJC, Santos FR, Pereira TPB, Oliveira OVS, Araujo CC, Passos CS, Rita MR (2012) Levantamento da entomofauna associada em sistema agroflorestal. Sci Plena 8:1–8Google Scholar
  68. DeBach P (1964) Biological control of insect pests and weeds. Reinhold, New YorkGoogle Scholar
  69. Deloach CJ (1976) Neochetina bruchi, a biological control agent of water hyacinth: host specificity in Argentina. Environ Entomol 7:635–642.  https://doi.org/10.1093/ee/7.2.322 CrossRefGoogle Scholar
  70. Denevan WM (1995) Prehistoric agricultural methods as models for sustainability. Adv Plant Pathol 11:21–43.  https://doi.org/10.1016/S0736-4539(06)80004-8 Google Scholar
  71. Derocles SAP, Le Ralec A, Besson MM, Maret M, Walton A, Evans DM, Plantagenest M (2014) Molecular analysis reveals high compartmentalization in aphid-primary parasitoid networks and low parasitoid sharing between crop and noncrop habitats. Mol Ecol 23:3900–3911.  https://doi.org/10.1111/mec.12701 CrossRefPubMedGoogle Scholar
  72. Díaz MAE, Brochero HL (2012) Parasitoides asociados al perforador del fruto de las solanáceas Neoleucinodes elegantalis (Lepidoptera: Crambidae) en Colombia. Rev Colomb Entomol 38:50–57Google Scholar
  73. Diaz MB, Maza N (2017) Dinámica espacio-temporal de insectos plaga y sírfidos en lechuga agroecológica asociada con aliso (Lobularia maritima). Instituto Nacional de Tecnología Agropecuaria (INTA), Concordia, ArgentinaGoogle Scholar
  74. Diaz B, Martínez M, Cavigliasso P (2018) Evaluación del trigo sarraceno (Fagopirum esculentum) como “planta insectario” en la horticultura agroecológica. In: X Congreso Argentino de Mecánica Computacional (XCAE), Mendoza, ArgentinaGoogle Scholar
  75. Diehl M, Ferla NJ, Johann L (2012) Plants associated to the grapevine: a strategy for biological control in the state of Rio Grande do Sul, Brazil. Arq Inst Biol 79(4):579–586CrossRefGoogle Scholar
  76. Donald PF (2004) Biodiversity impacts of some agricultural commodity production systems. Conserv Biol 18:17–37CrossRefGoogle Scholar
  77. Ehler L (1998) Conservation biological control: past, present, and future. In: Barbosa P (ed) Conservation biological control. Academic, San Diego, pp 1–8Google Scholar
  78. Enríquez L (2013) The paradoxes of Latin America’s ‘Pink Tide’: Venezuela and the project of agrarian reform. J Peasant Stud 40:611–638.  https://doi.org/10.1080/03066150.2012.746959 CrossRefGoogle Scholar
  79. Ernst O, Siri-Prieto G (2008) La agricultura en Uruguay: Su trayectoria y consecuencias. II Simposio Nacional de Agricultura, In, pp 149–163Google Scholar
  80. Escobar-Ramírez (2018) Effects of local and landscape scale factors on ant diversity and biocontrol of the coffee berry borer in Colombia. University of Göttingen, Göttingen, GermanyGoogle Scholar
  81. Espinosa I, Ochoa JB (2011) Mixture effect of common bean on rust and yield under on-farm and experimental conditions in Ecuador. In: Damage diversity and genetic vulnerability: the role of crop genetic diversity in the agricultural production system to reduce pest and disease damage. Proceedings of an International Symposium, Rabat, MoroccoGoogle Scholar
  82. Evans DC, Zambrano E (1991) Insect damage in maize of highland Ecuador and its significance in small farm pest management. Trop Pest Manag 37:409–414.  https://doi.org/10.1080/09670879109371626 CrossRefGoogle Scholar
  83. Evans HC, Holmes KA, Thomas SE (2003) Endophytes and mycoparasites associated with an indigenous forest tree, Theobroma gileri, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycol Prog 2:149–160.  https://doi.org/10.1007/s11557-006-0053-4 CrossRefGoogle Scholar
  84. FAO—Food and Agriculture Organization (2006) Ecuador, Nota de análisis sectorial, Agricultura y desarrollo ruralGoogle Scholar
  85. FAO—Food and Agriculture Organization (2011) Communication for agricultural innovation in BoliviaGoogle Scholar
  86. FAO—Food and Agriculture Organization (2017) Plan para la seguridad alimentaria, nutrición y erradicación del hambre de la CELAC 2025, capítulo Chile, Organización de las Naciones Unidas para la alimentación y la agricultura, Santiago, ChileGoogle Scholar
  87. FAOSTAT—Food and Agriculture Organization of the United Nations (2016) Production 574 crops 2016. http://wwwfaoorg/faostat/en/#data/QC Accessed 30 Jan 2019
  88. Ferla NJ, Marchetti MM, Gonçalves D (2007) Predatory mites (Acari) associated with strawberry and neighboring plants in the State of Rio Grande do Sul. Biota Neotrop 7(2):1–8CrossRefGoogle Scholar
  89. Ferreira M, Vázquez F, Gutiérrez V, Corválan N, Dacak J (2015) Agricultura y desarrollo en ParaguayGoogle Scholar
  90. Ferrer F (2001) Biological control of agricultural insect pests in Venezuela; advances, achievements, and future perspectives. Biocontrol News Inf 22:67–74Google Scholar
  91. Figueroa I, Ríos B, Crespo L, Saravia R, Quispe R (2013) Parasitoides de larvas de polilla de la quinua (Eurysacca quinoae P.), perspectiva de control biológico en quinua orgánica. In: Vargas M (ed) Congreso Científico de la Quinua (Memorias). La Paz, Bolivia, pp 359–369Google Scholar
  92. Flores R (2009) Evaluación de patogenicidad de cepas promisorias del hongo entomopatógeno Beauveria bassiana (BALSAMO) VUILL. In: sobre la Broca del Café Hyphothenemus hampei (FERRARI) en laboratorio. Universidad Mayor de San Andrés, La Paz, BoliviaGoogle Scholar
  93. Fonseca MM, Lima E, Lemos F, Venzon M, Janssen A (2017) Non-crop plant to attract and conserve an aphid predator (Coleoptera: Coccinellidae) in tomato. Biol Control 115:129–134CrossRefGoogle Scholar
  94. FONTAGRO (2001) Desarrollo de estrategias de control biológico para el manejo integrado de plagas de frutales (manzano). https://wwwfontagroorg/proyecto/desarrollo-de-estrategias-de-control-biologico-para-el-manejo-integrado-de-plagas-de-frutales-manzanos/ Accessed 3 May 2019
  95. Fürst M, Bergleiter S (2010) Biological control of coffee berry borer in organic coffee. Gräfelfing, GermanyGoogle Scholar
  96. Gajadin N (2004) Control of the hibiscus mealy bug (Maconellicoccus hirsutus) in Suriname. A comparative study of the chemical and biological control. Anton de Kom Universiteit van Suriname, Paramaribo, SurinameGoogle Scholar
  97. Gallego-Ropero MC, Armbrecht I (2005) Depredación por hormigas sobre la broca del café Hypothenemus hampei (Curculionidae: Scolytinae) en cafetales cultivados bajo dos niveles de sombra en Colombia. Rev Manejo Integr Plagas 76:32–40.  https://doi.org/10.1111/j.1365-2311.2006.00793.x CrossRefGoogle Scholar
  98. Galvão JC, Silva EC, Miranda GV, Bastos CS, Picanco MC, Silva RG (2001) Densidade populacional de alguns insetos em milho exclusivo e consorciado com feijao, em dois sistemas de adubacao. Rev Ceres 48:25–35Google Scholar
  99. Ganssen DN (2001) As pragas sob plantio direto. In: Rossello RD (ed) Siembra directa en el cono sur. Procisur, Montevideo, pp 103–120Google Scholar
  100. GEOUruguay (2016) Informe del estado del ambiente. PNUMA, CLAES; DINAMA, Montevideo, UruguayGoogle Scholar
  101. Gianoli E, Ramos I, Alfaro-Tapia A, Valdéz Y, Echegaray ER, Yábar E (2006) Benefits of a maize–bean–weeds mixed cropping system in Urubamba Valley, Peruvian Andes. Int J Pest Manag 52:283–289.  https://doi.org/10.1080/09670870600796722 CrossRefGoogle Scholar
  102. Gillespie MAK, Gurr GM, Wratten SD (2016) Beyond nectar provision: the other resource requirements of parasitoid biological control agents. Entomol Exp Appl 159:207–221.  https://doi.org/10.1111/eea.12424 CrossRefGoogle Scholar
  103. Gold CS, Altieri MA, Bellotti AC (1990) Effects of intercropping and varietal mixtures on the cassava hornworm, Erinnyis ello L. (Lepidoptera: Sphingidae), and the stemborer, Chilomima clarkei (Amsel) (Lepidoptera: Pyralidae), in Colombia. Trop Pest Manag 36:362–367.  https://doi.org/10.1080/09670879009371512 CrossRefGoogle Scholar
  104. Gontijo LM, Saldanha AV, Souza DR, Viana RS, Bordin BC, Antonio AC (2018) Intercropping hampers the nocturnal biological control of aphids. Ann Appl Biol 172:148–159CrossRefGoogle Scholar
  105. Grasswitz TR (2013) Development of an insectary plant mixture for New Mexico and its effect on pests and beneficial insects associated with pumpkins. Southwest Entomol 38:417–436.  https://doi.org/10.3958/059.038.0306 CrossRefGoogle Scholar
  106. Grasswitz TR, James DG (2009) Influence of hop yard ground flora on invertebrate pests of hops and their natural enemies. J Appl Entomol 133:210–221.  https://doi.org/10.1111/j.1439-0418.2008.01336.x CrossRefGoogle Scholar
  107. Gravena S (1992) Controle biológico no manejo integrado de pragas. Pesqui Agropecu Bras 27:281–299Google Scholar
  108. Grille G, Lorenzo ME, Burla J, Franco J, Basso C (2012) Parasitoid niches of Encarsia formosa and Encarsia Lycopersici (Hymenoptera: Aphelinidae) exploiting Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Florida Entomol 95:1024–1030.  https://doi.org/10.2307/41759152 CrossRefGoogle Scholar
  109. Gurr GM, Wratten SD, Landis DA, You M (2017) Habitat management to suppress pest populations: progress and prospects. Annu Rev Entomol 62:91–109.  https://doi.org/10.1146/annurev-ento-031616-035050 CrossRefPubMedGoogle Scholar
  110. Hagen K, Franz J (1973) A history of biological control. In: McComish J, Leigh Dowling MG, Hall F (eds) History of entomology. Annual Reviews Inc., Palo Alto, CA, pp 433–476Google Scholar
  111. Halloy SRP, Ortega R, Yager K, Seimon A (2005) Traditional Andean cultivation systems and implications for sustainable land use. Acta Hortic 670:31–55. doi: 10.17660/ActaHortic.2005.670.4Google Scholar
  112. Haro MM, Silveira LCP, Wilby A (2018) Stability lies in flowers: plant diversification mediating shifts in arthropod food webs. PLoS One 13(2):e0193045PubMedPubMedCentralCrossRefGoogle Scholar
  113. Harterreiten-Souza ES, Togni PHB, Pires CSS, Sujii ER (2014) The role of integrating agroforestry and vegetable planting in structuring communities of herbivorous insects and their natural enemies in the Neotropical region. Agroforest Syst 88:205–219CrossRefGoogle Scholar
  114. Heidari M, Copland M (1993) Honeydew: a food resource or arrestant for the mealybug predator Cryptolaemus montrouzieri? Entomophaga 38:63–68CrossRefGoogle Scholar
  115. Herrera FF, Domené-Painenao O, Cruces JM (2017) The history of agroecology in Venezuela: a complex and multifocal process. Agroecol Sustain Food Syst 41:401–415.  https://doi.org/10.1080/21683565.2017.1285842 CrossRefGoogle Scholar
  116. Hicks DM, Ouvrard P, Baldock KCR, Baude M, Goddard MA, Kunin WE, Mitschunas N, Memmott J, Morse H, Nikolitsi M, Osgathorpe LM, Potts SG, Robertson KM, Scott AV, Sinclair F, Westbury DB, Stone GN (2016) Food for pollinators: quantifying the nectar and pollen resources of urban flower meadows. PLoS One 11:e0158117.  https://doi.org/10.1371/journal.pone.0158117 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Hidalgo-Prieto GP (2014) Evaluación de la población de falsa arañita roja de la vid (Brevipalpus chilensis Baker), sus enemigos naturales y chanchito blanco (Pseudococcus sp.) en un viñedo manejado sin aplicaciones de azufre para el control de oídio. Memoria de título de Ingeniero Agrónomo, Universidad de Talca, Talca, ChileGoogle Scholar
  118. Hogervorst PAM, Wäckers FL, Carette AC, Romeis J (2008) The importance of honeydew as food for larvae of Chrysoperla carnea in the presence of aphids. J Appl Entomol 132:18–25.  https://doi.org/10.1111/j.1439-0418.2007.01247.x CrossRefGoogle Scholar
  119. INE (2017) Instituto Nacional de Estadistica (INE). https://wwwinegobbo/indexphp/estadisticas-por-actividad-economica/ Accessed 3 May 2019
  120. Ives AR, Settle WH (1997) Metapopulation dynamics and pest control in agricultural systems. Am Nat 149:220–246CrossRefGoogle Scholar
  121. Jaramillo J, Bustillo AE, Montoya EC, Borgemeister C (2005) Biological control of the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae) by Phymastichus coffea (Hymenoptera: Eulophidae) in Colombia. Bull Entomol Res 95:467–472.  https://doi.org/10.1079/BER2005378 CrossRefPubMedGoogle Scholar
  122. Jaramillo JL, Montoya EC, Benavides P, Góngora BCE (2015) Beauveria bassiana y Metarhizium anisopliae para el control de broca del café en frutos del suelo. Rev Colomb Entomol 41:95–104.  https://doi.org/10.1002/etc.2379 CrossRefGoogle Scholar
  123. Jonsson M, Wratten SD, Landis DA, Gurr GM (2008) Recent advances in conservation biological control of arthropods by arthropods. Biol Control 45:172–175.  https://doi.org/10.1016/j.biocontrol.2008.01.006 CrossRefGoogle Scholar
  124. Kairo MTK, Pollard GV, Peterkin DD, Lopez VF (2000) Biological control of the hibiscus mealybug, Maconellicoccus hirsutus green (Hemiptera: Pseudococcidae) in the Caribbean. Integr Pest Manag Rev 5:241–254.  https://doi.org/10.1023/A:1012997619132 CrossRefGoogle Scholar
  125. Karp DS, Chaplin-Kramer R, Meehan TD, Martin EA, DeClerck F, Grab H, Gratton C, Hunt L, Larsen AE, Martínez-Salinas A, O’Rourke ME, Rusch A, Poveda K, Jonsson M, Rosenheim JA, Schellhorn NA, Tscharntke T, Wratten SD, Zhang W, Iverson AL, Adler LS, Albrecht M, Alignier A, Angelella GM, Zubair-Anjum M, Avelino J, Batáry P, Baveco JM, Bianchi FJJA, Birkhofer K, Bohnenblust EW, Bommarco R, Brewer MJ, Caballero-López B, Carrière Y, Carvalheiro LG, Cayuela L, Centrella M, Cetkovic A, Henri DC, Chabert A, Costamagna AC, De la Mora A, de Kraker J, Desneux N, Diehl E, Diekötter T, Dormann CF, Eckberg JO, Entling MH, Fiedler D, Franck P, van Veen FJF, Frank T, Gagic V, Garratt MPD, Getachew A, Gonthier DJ, Goodell PB, Graziosi I, Groves RL, Gurr GM, Hajian-Forooshani Z, Heimpel GE, Herrmann JD, Huseth AS, Inclán DJ, Ingrao AJ, Iv P, Jacot K, Johnson GA, Jones L, Kaiser M, Kaser JM, Keasar T, Kim TN, Kishinevsky M, Landis DA, Lavandero B, Lavigne C, Le Ralec A, Lemessa D, Letourneau DK, Liere H, Lu Y, Lubin Y, Luttermoser T, Maas B, Mace K, Madeira F, Mader C, Cortesero AM, Marini L, Martinez E, Martinson HM, Menozzi P, Mitchell MGE, Miyashita T, Molina GAR, Molina-Montenegro MA, O’Neal M, Opatovsky I, Ortiz-Martinez S, Nash M, Östman Ö, Ouin A, Pak D, Paredes D, Parsa S, Parry H, Perez-Alvarez PDJ, Peterson JA, Petit S, Philpott SM, Plantegenest M, Plećaš M, Pluess T, Pons X, Potts SG, Pywell RF, Ragsdale DW, Rand TA, Raymond L, Ricci B, Sargent C, Sarthou JP, Saulais J, Schäckermann J, Schmidt NP, Schneider G, Schüepp C, Sivakoff FS, Smith HG, Whitney KS, Stutz S, Szendrei Z, Takada MB, Taki H, Tamburini G, Thomson LJ, Tricault Y, Tsafack N, Tschumi M, Valantin-Morison M, van Trinh M, van der Werf W, Vierling KT, Werling BP, Wickens JB, Wickens VJ, Woodcock BA, Wyckhuys K, Xiao H, Yasuda M, Yoshioka A, Zou Y (2018) Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc Natl Acad Sci 115:1–8.  https://doi.org/10.1073/pnas.1800042115 CrossRefGoogle Scholar
  126. Klick J, Yang WQ, Walton VM, Dalton DT, Hagler JR, Dreves AJ, Lee JC, Bruck DJ (2016) Distribution and activity of Drosophila suzukii in cultivated raspberry and surrounding vegetation. J Appl Entomol 140:37–46.  https://doi.org/10.1111/jen.12234 CrossRefGoogle Scholar
  127. Kroschel J, Mujica N, Alcazar J, Canedo V, Zegarra O (2012) Developing integrated pest management for potato: experiences and lessons from two distinct potato production systems of Peru. In: Sustainable potato production: global case studies. Springer, Dordrecht, pp 419–450.  https://doi.org/10.1007/978-94-007-4104-1_25 CrossRefGoogle Scholar
  128. Lamas JM (1980) Control de los insectos-plaga del algodonero en el Perú–Esquema de la planificación de una campaña de control integrado y su problemática. Rev Peru Entomol 23:1–6Google Scholar
  129. Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201PubMedCrossRefGoogle Scholar
  130. Lange D, Fernandes WD, Raizer J, Faccenda O (2008) Predacious activity of ants (Hymenoptera: Formicidae) in conventional and in no-till agriculture systems. Braz Arch Biol Technol 51(6):1199–1207CrossRefGoogle Scholar
  131. Latawiec AE, Strassburg BBN, Rodriguez AM, Matt E, Nijbroek R, Silos M (2014) Suriname: reconciling agricultural development and conservation of unique natural wealth. Land Use Policy 38:627–636.  https://doi.org/10.1016/j.landusepol.2014.01.007 CrossRefGoogle Scholar
  132. Lavandero IB, Wratten SD, Didham RK, Gurr G (2006) Increasing floral diversity for selective enhancement of biological control agents: a double-edged sward? Basic Appl Ecol 7:236–243.  https://doi.org/10.1016/j.baae.2005.09.004 CrossRefGoogle Scholar
  133. Ledezma J, Amaya M, Magne C, Ramos AC, Torrico J, Quisberth E (2013) The use of parasitoids for the biological control of fruit flies in Santa Cruz. T’inkazos 33:93–117Google Scholar
  134. Lee JC, Menalled FD, Landis DA (2001) Refuge habitats modify impact of insecticide disturbance on carabid beetle communities. J Appl Ecol 38:472–483.  https://doi.org/10.1046/j.1365-2664.2001.00602.x CrossRefGoogle Scholar
  135. Lee JC, Heimpel GE, Leibee GL (2004) Comparing the effects of floral nectar and aphid honeydew on a parasitoid wasp. Entomol Exp Appl 111:189–199CrossRefGoogle Scholar
  136. Leihner D (1983) Management and evaluation of intercropping systems with cassava. Centro Internacional de Agricultura Tropical (CIAT), Cali, ColombiaGoogle Scholar
  137. Leporati M, Salcedo S, Jara B, (2014) La agricultura familiar en cifras. In: Salcedo S, Guzmán L (Eds.), Agricultura familiar en América Latina y el Caribe: Recomendaciones de política. Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO), Santiago, ChileGoogle Scholar
  138. Letourneau DK, Jedlicka JA, Bothwell SG, Moreno CR (2009) Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu Rev Ecol Evol Syst 40:573–592.  https://doi.org/10.1146/annurev.ecolsys.110308.120320 CrossRefGoogle Scholar
  139. Letourneau DK, Armbrecht I, Salguero-Rivera B, Montoya-Lerma J, Jiménez-Carmona E, Daza MC, Escobar S, Galindo V, Gutiérrez C, Duque-López S, López-Mejia J, Acosta-Rangel AM, Herrera-Rangel J, Rivera L, Saavedra CA, Torres AM, Reyes-Trujillo A (2011) Does plant diversity benefit agroecosystems? A synthetic review. Ecol Appl 21:9–21PubMedCrossRefGoogle Scholar
  140. Linares B (1998) Farm family rearing of egg parasites in Venezuela. Biocontrol News Inf 19:76NGoogle Scholar
  141. Lobaton-Marquez M (1958) Algunas investigaciones sobre el parasitismo de los huevos de Mescinia peruella Schaus, en el Valle de Pisco. Rev Peru Entomol 1:43–46Google Scholar
  142. Loya-Ramirez JG, García-Hernandez JL, Ellington JJ, Thompson DV (2003) Impacto de la asociación de cultivos en la densidad de insectos hemípteros entomófagos. Interciencia 28:415–420Google Scholar
  143. Luna M, Sánchez N, Pereyra P, Nieves E, Savino V, Luft E, Virla E, Speranza S (2012) Biological control of Tuta absoluta in Argentina and Italy: evaluation of indigenous insects as natural enemies. EPPO Bull 42:1–8CrossRefGoogle Scholar
  144. Macfadyen S, Gibson R, Polaszek A, Morris R, Craze P, Planqué R, Symondson W, Memmto J (2009) Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control ? Ecol Lett 12:229–238.  https://doi.org/10.1111/j.1461-0248.2008.01279.x CrossRefPubMedGoogle Scholar
  145. Macfadyen S, Hopkinson J, Parry H, Neave MJ, Bianchi FJJA, Zalucki MP, Schellhorn NA (2015) Early-season movement dynamics of phytophagous pest and natural enemies across a native vegetation-crop ecotone. Agric Ecosyst Environ 200:110–118.  https://doi.org/10.1016/j.agee.2014.11.012 CrossRefGoogle Scholar
  146. Martínez G, González A, Dicke M (2018) Rearing and releasing the egg parasitoid Cleruchoides noackae, a biological control agent for the Eucalyptus bronze bug. Biol Control 123:97–104CrossRefGoogle Scholar
  147. McMurtry JA, Scriven GT (2015) Studies on the feeding, reproduction, and development of Amblyseius hibisci (Acarina: Phytoseiidae) on various food substances. Ann Entomol Soc Am 57:649–655.  https://doi.org/10.1093/aesa/57.5.649 CrossRefGoogle Scholar
  148. Medeiros MA, Sujii ER, Morais HC (2009) Effect of plant diversification on abundance of South American tomato pinworm and predators in two cropping systems. Hortic Bras 27:300–306CrossRefGoogle Scholar
  149. Medeiros HR, Hoshino AT, Ribeiro MC, Morales MN, Martello F, Pereira Neto OC, Carstensen DW, Menezes Junior AO (2018) Non-crop habitats modulate alpha and beta diversity of flower flies (Diptera, Syrphidae) in Brazilian agricultural landscapes. Biodivers Conserv 27:1309–1326CrossRefGoogle Scholar
  150. Michaud JP (2018) Problems inherent to augmentation of natural enemies in open agriculture. Neotrop Entomol 47:161–170PubMedCrossRefGoogle Scholar
  151. Mighty M (2016) The Jamaican coffee industry: challenges and responses to increased global competition. In: Globalization, agriculture and food in the Caribbean. Palgrave Macmillan UK, London, pp 129–153.  https://doi.org/10.1057/978-1-137-53837-6_6 CrossRefGoogle Scholar
  152. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington DCGoogle Scholar
  153. Molina GAR, Poggio SL, Ghersa CM (2016) Structural complexity of arthropod guilds is affected by the agricultural landscape heterogeneity generated by fencerows. Ann Appl Biol 168:173–184.  https://doi.org/10.1111/aab.12253 CrossRefGoogle Scholar
  154. Molina GAR, Poggio SL, Ghersa CM (2019) Parasitoid diversity and parasitism rates in Pampean agricultural mosaics are enhanced by landscape heterogeneity. Insect Conserv Divers 1–12.  https://doi.org/10.1111/icad.12342 CrossRefGoogle Scholar
  155. Morales P, Carmeli M (2002) Trap crop evaluation in tomatoes (Lycopersicon esculentum Mill.) in the control of whiteflies Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Rev Fac Agron 19:9–22Google Scholar
  156. Morrone JJ (2006) Biogeographic areas and transition zones of Latin America and the Caribbean islands based on panbiogeographic and cladistic analyses of the entomofauna. Annu Rev Entomol 51:467–494.  https://doi.org/10.1146/annurev.ento.50.071803.130447 CrossRefPubMedGoogle Scholar
  157. Mousques J (2016a) Liberación del parasitoide Diachasmimorpha longicaudata (Ashmead) en la estación experimental Concordia del INTA, Instituto Nacional de Tecnología Agropecuaria (INTA). Concordia, ArgentinaGoogle Scholar
  158. Mousques J (2016b) Nuevas alternativas para el control de plagas y enfermedades en cultivos hortícolas. Instituto Nacional de Tecnología Agropecuaria (INTA), Concordia, ArgentinaGoogle Scholar
  159. Murta AF, Ker FTO, Costa DB, Espírito-Santo MM, Faria M (2008) Efeitos de Remanescentes de Mata Atlântica no Controle Biológico de Euselasia apisaon (Dahman) (Lepidoptera: Riodinidae) por Trichogramma maxacalii (Voegelé e Pointel) (Hymenoptera: Trichogrammatidae). Neotrop Entomol 37(2):229–232PubMedCrossRefGoogle Scholar
  160. New Zealand Foreign Affairs, Trade Aid Programme (2006) Biological control to improve quality of life in the Ecuadorean Andes. In: Latin America and Caribbean Regional Programme, EcuadorGoogle Scholar
  161. Nicholls C, Parrella M, Altieri M (1998) Advances and perspectives in the biological control of greenhouse pests with special reference to Colombia. Integr Pest Manag Rev 3:99–109CrossRefGoogle Scholar
  162. Nicholls CI, Parella M, Altieri MA (2001) The effects of a vegetational corridor on the abundance and dispersal of insect biodiversity within a northern California organic vineyard. Landsc Ecol 16:133–146CrossRefGoogle Scholar
  163. Noboa M, Díaz A, Vásquez W, Viera W (2017) Parasitoides de Neoleucinodes elegantalis Geneé (Lepidóptera: Cambidae) en Ecuador. Idesia 35.  https://doi.org/10.4067/S0718-34292017005000015
  164. Nonino MC, Pasini A, Ventura UM (2007) Attraction of the predator Doru luteipes (Scudder) (Dermaptera: Forficulidae) by olfactory stimulus of alternative diets in the laboratory. Ciencia Rural 37(3):623–627CrossRefGoogle Scholar
  165. Novais SMA, Macedo-Reis LE, Rocha WD, Neves FS (2016) Effects of habitat management on different feeding guilds of herbivorous insects in cacao agroforestry systems. Rev Biol Trop 64(2):763–777PubMedCrossRefGoogle Scholar
  166. Novais SMA, Macedo-Reis LE, Neves FS (2017) Predatory beetles in cacao agroforestry systems in Brazilian Atlantic forest: a test of the natural enemy hypothesis. Agroforest Syst 91(1):201–209CrossRefGoogle Scholar
  167. Ohnesorg WJ, Johnson KD, O’neal ME (2009) Impact of reduced-risk insecticides on soybean aphid and associated natural enemies. J Econ Entomol 102:1816–1826.  https://doi.org/10.1603/029.102.0512 CrossRefPubMedGoogle Scholar
  168. Olckers T, Medal JC, Gandolfo DE (2006) Insect herbivores associated with species of Solanum (Solanaceae) in northeastern Argentina and southeastern Paraguay, with reference to biological control of weeds in South Africa and the United States of America. Florida Entomol 85:254–260.  https://doi.org/10.1653/0015-4040(2002)085[0254:ihawso]2.0.co;2 CrossRefGoogle Scholar
  169. Oliveira CM, Auad AM, Mendes SM, Frizzas MR (2013) Economic impact of exotic insect pests in Brazilian agriculture. J Appl Entomol 137:1–15CrossRefGoogle Scholar
  170. Orrego R, Ortiz O, Tenorio J (2009) Scaling-up of Farmers Field School (FFS) in Peru. CIP’s contribution to the process. In: The 15th international symposium of the International Society for Tropical Root Crops (ISTRC). International Society for Tropical Root Crops (ISTRC), Lima, Perú, pp 66–66Google Scholar
  171. Ortiz O (2006) Evolution of agricultural extension and information dissemination in Peru: an historical perspective focusing on potato-related pest control. Agric Hum Values 23:477–489.  https://doi.org/10.1007/s10460-006-9014-4 CrossRefGoogle Scholar
  172. Ortiz O, Frias G, Ho R, Cisneros H, Nelson R, Castillo R, Orrego R, Pradel W, Alcazar J, Bazán M (2008) Organizational learning through participatory research: CIP and CARE in Peru. Agric Hum Values 25:419–431.  https://doi.org/10.1007/s10460-007-9108-7 CrossRefGoogle Scholar
  173. Ovruski S, Aluja M, Sivinski J, Wharton R (2000) Hymenopteran parasitoids on fruit-infesting Tephritidae (Diptera) in Latin America and the southern United States: diversity, distribution, taxonomic status and their use in fruit fly biological control. Integr Pest Manag Rev 5:81–107CrossRefGoogle Scholar
  174. Ovruski SM, Schliserman P, Nuñez-Campero SR, Oroño LE, Bezdjian LP, Albornoz-Medina P, Van GA (2009) A survey of hymenopterous larval-pupal parasitoids associated with Anastrepha fraterculus and Ceratitis capitata (Diptera: Tephritidae) infesting wild guava (Psidium guajava) and peach (Prunus persica) in the southernmost section of the Bolivian Yu. Florida Entomol 92:269–275.  https://doi.org/10.1653/024.092.0211 CrossRefGoogle Scholar
  175. Parra JRP, Junior Coelho A (2019) Applied biological control in Brazil: from laboratory assays to field application. J Insect Sci 19(2):1–6Google Scholar
  176. Paulier J, Núñez P, Zignago A (2008) Un nuevo aliado para el control de la polilla del tomate. Rev INIA Uruguay 15:30–31Google Scholar
  177. Peñalver-Cruz A, Alvarez D, Lavandero B (2019) Do hedgerows influence the natural biological control of woolly apple aphids in orchards? Journal of Pest Science.  https://doi.org/10.1007/s10340-019-01153-1
  178. Pazmiño J, Ochoa JB (2011) Participatory diagnosis of crop genetic diversity to reduce pests and diseases on-farm in common bean in Cotacachi, Ecuador. In: Damage diversity and genetic vulnerability: the role of crop genetic diversity in the agricultural production system to reduce pest and disease damage. Proceedings of an international symposium, Rabat, MoroccoGoogle Scholar
  179. Pengue WA (2015) Dinámicas y perspectivas de la agricultura actual en Latinoamérica: Bolivia, Argentina. Paraguay y Uruguay, Fundación Heinrich Böll Cono SurGoogle Scholar
  180. Pereira JL, Picanco MC, Pereira EJG, Silva AA, Jakelaitis A, Pereira RR, Xavier VM (2010) Influence of crop management practices on bean foliage arthropods. B Entomol Res 100(6):679–688CrossRefGoogle Scholar
  181. Perović DJ, Gámez-Virués S, Landis DA, Wäckers F, Gurr GM, Wratten SD, You MS, Desneux N (2018) Managing biological control services through multi-trophic trait interactions: review and guidelines for implementation at local and landscape scales. Biol Rev 93:306–321.  https://doi.org/10.1111/brv.12346 CrossRefPubMedGoogle Scholar
  182. Persson L, Johansson H (2012) Intercropping strategies and challenges in cacao production. Agriculture programme—soil and plant sciences: a field study in Juanjuí, PeruGoogle Scholar
  183. Philpott SM, Bichier P, Rice RA, Greenberg R (2008) Biodiversity conservation, yield, and alternative products in coffee agroecosystems in Sumatra, Indonesia. Biodivers Conserv 17:1805–1820.  https://doi.org/10.1007/s10531-007-9267-2 CrossRefGoogle Scholar
  184. Pickett CH, Roltsch W, Corbett A (2004) The role of rubidium marked natural enemy refuge in the establishment and movement of Bemisia parasitoids. Int J Pest Manag 50:183–191.  https://doi.org/10.1080/09670870410001731916 CrossRefGoogle Scholar
  185. Portalanza DE, Sanchez L, Plúas M, Felix I, Costa VA, Dias-Pini N da S, Ferreira-Stafanous S, Gómez-Torres ML (2017) First records of parasitoids attacking the Asian citrus psyllid in Ecuador. Rev Bras Entomol 61:107–110. doi:  https://doi.org/10.1016/j.rbe.2017.02.002 CrossRefGoogle Scholar
  186. Poveda K, Gómez M, Martínez E (2008) Diversification practices: their effect on pest regulation and production. Rev Colomb Entomol 34:131–144Google Scholar
  187. Quispe R, Tangara E, Pinto M, Rojas W, Jacobsen S (2013) Entomofauna benéfica asociada a malezas adyacentes al cultivo de la quinua (Chenopodium quinoa Willd.) en el altiplano central de Bolivia. In: Vargas M (ed) Congreso Científico de la Quinua (Memorias). La Paz, Bolivia, pp 407–415Google Scholar
  188. Quispe R, Mazón M, Rodríguez-Berrío A (2017) Do refuge plants favour natural pest control in maize crops? Insects 8.  https://doi.org/10.3390/insects8030071 PubMedCentralCrossRefPubMedGoogle Scholar
  189. Quispe-Tarqui R (2015) Refugios vegetales para el fomento de la entomofauna benéfica en el agroecosistema del cultivo de maíz en la Molina. Universidad Nacional Agraria La Molina. Escuela de Posgrado, Lima, PerúGoogle Scholar
  190. Rao MR, Singh MP, Day R (2000) Insect pest problems in tropical agroforestry systems: contributory factors and strategies for management. Agroforest Syst 50(3):243–277CrossRefGoogle Scholar
  191. Rasmussen C, Lagnaoui A, Esbjerg P (2003) Advances in the knowledge of quinoa pests. Food Rev Int 19:61–75.  https://doi.org/10.1081/FRI-120018868 CrossRefGoogle Scholar
  192. Rentería BJL, Ellison C (2004) Potential biological control of Lantana camara in the Galapagos using the rust Puccinia lantanae. SIDA, Contrib to Bot 21:1009–1017Google Scholar
  193. Repetto R (1985) Paying the price: pesticide subsidies in developing countries. Washington, DC, World Resources Institute (WRI), p 33Google Scholar
  194. Resende ALS, Viana AJS, Oliveira RJ, Aguiar-Menezes EL, Ribeiro RLD, Ricci MSF, Guerra JGM (2010) Consórcio couve-coentro em cultivo orgânico e sua influência nas populações de joaninhas. Hortic Bras 28:41–46CrossRefGoogle Scholar
  195. Rezende MQ, Venzon M, Pereza AL, Cardoso IM, Janssen A (2014) Extrafloral nectaries of associated trees can enhance natural pest control. Agric Ecosyst Environ 188(15):198–213CrossRefGoogle Scholar
  196. Rhoades RE, Bebbington AJ (1990) Mixing it up: variations in Andean farmers’ rationales for intercropping of potatoes. F Crop Res 25:145–156.  https://doi.org/10.1016/0378-4290(90)90079-Q CrossRefGoogle Scholar
  197. Ribeiro A (2010) Prospección de agentes para el control natural de plagas en sistemas agrícolas pastoriles. In: Rebuffo M, Cabrera K (eds) Altier N. Enfermedades de Plagas y Pasturas, INIA Las Brujas, pp 107–109Google Scholar
  198. Ribeiro A, Gontijo LM (2017) Alyssum flowers promote biological control of collard pests. Biocontrol 62:185–196CrossRefGoogle Scholar
  199. Ribeiro A, Silva H, Abbate S (2013) Manejo de plagas en trigo y cebada. Unidad de Comunicación de la Universidad de la República, Montevideo, Uruguay, p 62Google Scholar
  200. Ribeiro A, Silva H, Castiglioni E, Bataburu S, Martínez JJ (2015) Control natural de Crocidosema (Epinotia) aporema (Walsingham) (Lepidoptera: Tortricidae) por parasitoides y hongos entomopatógenos en Lotus corniculatus y Glycine max. Agrociencia Uruguay 19:36–41Google Scholar
  201. Risco S (1964) Los barrenadores del género Diatraea y otros taladradores de la caña de azúcar en Santa Cruz (Bolivia). Rev Peru Entomol 7:13–18Google Scholar
  202. Rodrigues-Cruz FA, Venzon M, Pinto CMF (2013) Performance of Amblyseius herbicolus on broad mites and on castor bean and sunnhemp pollen. Exp Appl Acarol 60:497–507.  https://doi.org/10.1007/s10493-013-9665-y CrossRefGoogle Scholar
  203. Rogg HW, Camacho E (2000) History of fruitflies and their control in Bolivia. Santa Cruz de la Sierra, BoliviaGoogle Scholar
  204. Root R (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124CrossRefGoogle Scholar
  205. Russell EP (1989) Enemies hypothesis: a review of the effect of vegetational diversity on predatory insects and parasitoids. Environ Entomol 18:590–599.  https://doi.org/10.1093/ee/18.4.590 CrossRefGoogle Scholar
  206. Salas-Gervassio NG, Luna MG, Lee S, Salvo A, Sánchez NE (2016) Trophic web associated with the South American tomato moth Tuta absoluta: implications for its conservation biological control in Argentina. Agric For Entomol 18:137–144.  https://doi.org/10.1111/afe.12146 CrossRefGoogle Scholar
  207. Salvatierra-Muñoz MA (2017) Influencia del manejo fitosanitario del oídio de la vid sobre las poblaciones de Brevipalpus chilensis, Cydnodromus californicus y Pseudococcus viburni. Universidad de Talca, Talca, Chile, Memoria de título de Ingeniero AgrónomoGoogle Scholar
  208. Sampaio MV, Bueno VHP, Silveira LCP, Auad AM (2010) Biological control of insect pests in the tropics. In: Del Claro K, Oliveira P, VRG (eds) Tropical biology and conservation management. UNESCO, Oxford, pp 28–70Google Scholar
  209. Sanchez GA, Redolfi de Huiza I (1988) Liriomyza huidobrensis y sus parasitoides en papa cultivada en Rimac y Cañete, 1986. Rev Peru Entomol 31:110–112Google Scholar
  210. Schiesari L, Grillitsch B (2011) Pesticides meet megadiversity in the expansion of biofuel crops. Front Ecol Environ 9(4):215–221CrossRefGoogle Scholar
  211. Schütz I, Moritz GB, Roos W (2014) Alkaloid metabolism in thrips-Papaveraceae interaction: recognition and mutual response. J Plant Physiol 171:119–126.  https://doi.org/10.1016/j.jplph.2013.10.009 CrossRefPubMedGoogle Scholar
  212. Shields MW, Johnson AC, Pandey S, Cullen R, González-Chang M, Wratten SD, Gurr GM (2019) History, current situation and challenges for conservation biological control. Biol Control 131:25–35CrossRefGoogle Scholar
  213. Siekmann G, Tenhumberg B, Keller MA (2001) Feeding and survival in parasitic wasps: sugar concentration and timing matter. Oikos 95:425–430.  https://doi.org/10.1034/j.1600-0706.2001.950307.x CrossRefGoogle Scholar
  214. Silva GS, Jahnke SM, Ferreira MLG (2016) Hymenoptera parasitoids in protected area of Atlantic forest biomes and organic rice fields: compared assemblages. Rev Colomb Entomol 42(2):110–117CrossRefGoogle Scholar
  215. Silveira LCP, Bueno VHP, Pierre LSR, Mendes SM (2003) Plantas cultivadas e invasoras como habitat para predadores do gênero Orius (Wolff) (Heteroptera: Anthocoridae). Bragantia 62:261–265CrossRefGoogle Scholar
  216. Smith RAJ (2016) Multiple stresses in a globalized world: livelihood vulnerability amongst Carib communities in Northeastern St Vincent. In: Globalization, agriculture and food in the Caribbean. Palgrave Macmillan UK, London, pp 157–188.  https://doi.org/10.1057/978-1-137-53837-6_7 CrossRefGoogle Scholar
  217. Smith L, Bellotti A (1996) Successful biocontrol projects with emphasis on the Neotropics. Cornell Community, Conference on Biological Control, Cornell University, USAGoogle Scholar
  218. Smith HA, McSorely R (2000) Intercropping and pest management: a review of major concepts. Am Entomol 46:154–161CrossRefGoogle Scholar
  219. Soto-Pflucker O (1987) Influencia de la densidad del maíz sobre los insectos en el cultivo asociado frijol-maíz. Rev Peru Entomol 30:33–37Google Scholar
  220. Sperber CF, Nakayama K, Valverde MJ, Neves FS (2004) Tree species richness and density affect parasitoid diversity in cacao agroforestry. Basic Appl Ecol 5:241–251CrossRefGoogle Scholar
  221. Squire FA (1972) Entomological problems in Bolivia. PANS Pest Artic News Summ 18:249–268.  https://doi.org/10.1080/09670877209411802 CrossRefGoogle Scholar
  222. Stansly P, Orellana MG (1990) Field manipulation of Nomuraea rileyi (Moniliales: Moniliaceae): effects on soybean defoliators in coastal Ecuador. J Econ Entomol 83:2193–2195CrossRefGoogle Scholar
  223. Stapel JO, Cortesero AM, De Moraes CM, Tumlinson JH, Lewis WJ (1997) Extrafloral nectar, honeydew, and sucrose effects on searching behavior and efficiency of Microplitis croceipes (Hymenoptera: Braconidae) in cotton. Environ Entomol 26:617–623CrossRefGoogle Scholar
  224. Staver C, Bustamante O, Siles P, Aguilar C, Quinde K, Castellón J, Somarriba F, Tapia A, Brenes S, Deras M, Matute N (2013) Intercropping bananas with coffee and trees: prototyping agroecological intensification by farmers and scientists. Acta Hortic:79–86.  https://doi.org/10.17660/ActaHortic.2013.986.6
  225. Suárez-Capello C, Agama J (2011) Relating crop damage levels on farm to crop varietal diversity measure by richness, evenness and diversity for banana in Ecuador. In: Damage diversity and genetic vulnerability: the role of crop genetic diversity in the agricultural production system to reduce pest and disease damage. Proceedings of an international symposium, Rabat, MoroccoGoogle Scholar
  226. Teodoro AV, Muñoz A, Tscharntke T, Klein AM, Tylianakis JM (2011) Early succession arthropod community changes on experimental passion fruit plant patches along a land-use gradient in Ecuador. Agric Ecosyst Environ 140:14–19.  https://doi.org/10.1016/j.agee.2010.11.006 CrossRefGoogle Scholar
  227. Thrupp LA (2000) Linking agricultural biodiversity and food security: the valuable role of agrobiodiversity for sustainable agriculture. Int Aff 76:265–281PubMedCrossRefGoogle Scholar
  228. Togni PHB, Frizzas MR, Medeiros MA, Nakasu YET, Pires CSS, Sujii ER (2009) Population dynamic of whitefly in monoculture tomato crop and consortium with coriander in organic and conventional crop system. Hortic Bras 27:179–184CrossRefGoogle Scholar
  229. Togni PHB, Cavalcante KR, Langer LF, Gravina CS, Medeiros MA, Pires SS, Fontes EMG, Sujii ER (2010) Conservation of natural enemies (Insecta) in the organic tomato crop. Arq Inst Biol 77(4):669–676Google Scholar
  230. Togni PHB, Venzon M, Souza LM, Sousa AATC, Harterreiten-Souza ES, Pires CSS, Sujii ER (2019a) Dynamics of predatory and herbivorous insects at the farm scale: the role of cropped and noncropped habitats. Agr Forest Entomol (in press).  https://doi.org/10.1111/afe.12337 CrossRefGoogle Scholar
  231. Togni PHB, Venzon M, Lagôa ACG, Sujii ER (2019b) Brazilian legislation leaning towards fast registration of biological control agents to benefit organic agriculture. Neotrop Entomol 48:175–185PubMedCrossRefGoogle Scholar
  232. Togni PHB, Venzon M, Souza LM, Santos JPCR, Sujii ER (2019c) Biodiversity provides whitefly biological control based on farm management. J Pest Sci 92(393):403.  https://doi.org/10.1007/s10340-018-1021-x CrossRefGoogle Scholar
  233. Tomazella VB, Jacques GC, Lira AC, Silveira LCP (2018) Visitation of social wasps in Arabica coffee crop (Coffea arabica L.) intercropped with different tree species. Sociobiology 65(2):299–304CrossRefGoogle Scholar
  234. Torres R, González L, Arias O, Ramirez de Loperz M (2018) Enemigos naturales de áfidos (Hemiptera: Aphididae) presentes en zonas productoras de trigo en Paraguay. Rev Investig Agrar 20:78–83CrossRefGoogle Scholar
  235. Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tylianakis JM, van Nouhuys S, Vidal S (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43:294–309.  https://doi.org/10.1016/j.biocontrol.2007.08.006 CrossRefGoogle Scholar
  236. Tscharntke T, Sekercioglu CH, Dietsch TV, Sodhi NS, Hoehn P, Tylianakis JM (2008) Landscape constraints of functional diversity of birds and insects in tropical agroecosystems. Ecol 89:944–951CrossRefGoogle Scholar
  237. Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Hölscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wanger TC (2011) Multifunctional shade-tree management in tropical agroforestry landscapes—a review. J Appl Ecol 48:619–629CrossRefGoogle Scholar
  238. Tylianakis JM, Romo CM (2010) Natural enemy diversity and biological control: Making sense of the context-dependency. Basic Appl Ecol 11:657–668.  https://doi.org/10.1016/j.baae.2010.08.005 CrossRefGoogle Scholar
  239. Tylianakis J, Veddeler D, Lozada T, López RM, Benítez A, Klein M, de Koning GHJ, Olschewski R, Veldkamp E, Navarrete H, Onore G, Tscharntke T (2004) Biodiversity of land-use systems in coastal Ecuador and bioindication using trap-nesting bees, wasps, and their natural. Lyonia 6:7–15Google Scholar
  240. Tylianakis JM, Tscharntke T, Klein AM (2006) Diversity, ecosystem function, and stability of parasitoid-host interactions across a tropical habitat gradient. Ecology 87:3047–3057PubMedCrossRefGoogle Scholar
  241. Urrego-Mesa A, Infante-Amate J, Tello E (2018) Pastures and cash crops: biomass flows in the socio-metabolic transition of twentieth-century Colombian agriculture. Sustain 11:1–28.  https://doi.org/10.3390/su11010117 CrossRefGoogle Scholar
  242. Valle D (2016) Efecto de la cobertura vegetal sobre las poblaciones de Cacopsylla bidens (Sulc, 1907) y sus enemigos naturales. Universidad de La República, Montevideo, Uruguay, p 64Google Scholar
  243. Van Lenteren JC (2012) IOBC internet book of biological control, version 6. Wageningen, The NetherlandsGoogle Scholar
  244. Van Lenteren JC, Bueno VHP (2003) Augmentative biological control of arthropods in Latin America. BioControl 48:123–139.  https://doi.org/10.1023/A:1022645210394 CrossRefGoogle Scholar
  245. Vandermeer J, Carvajal R (2001) Metapopulation dynamics and the quality of the matrix. Am Nat 158:211–220.  https://doi.org/10.2307/3079200 CrossRefPubMedGoogle Scholar
  246. Vandermeer J, Perfecto I, Ibarra Nuñez G, Phillpott S, Ballinas AG (2002) Ants (Azteca sp.) as potential biological control agents in shade coffee production in Chiapas, Mexico. Agrofor Syst 56:271–276.  https://doi.org/10.1023/A:1021328820123 CrossRefGoogle Scholar
  247. Veddeler D, Tylianakis J, Tscharntke T, Klein AM (2010) Natural enemy diversity reduces temporal variability in wasp but not bee parasitism. Oecologia 162:755–762.  https://doi.org/10.1007/s00442-009-1491-x CrossRefPubMedGoogle Scholar
  248. Vélez M, Bustillo A, Posada F (2006) Hormigas durante el secado solar del café. Manejo Integr Plagas y Agroecol 77:62–69Google Scholar
  249. Venzon M, Rosado MC, Euzebio DE, Souza B, Schoereder JH (2006) Suitability of leguminous cover crop pollen as food source for the green lacewing Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae). Neotrop Entomol 35:371–376PubMedCrossRefGoogle Scholar
  250. Vera JT, Montoya EC, Benavides P, Góngora CE (2011) Evaluation of Beauveria bassiana (Ascomycota: Hypocreales) as a control of the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae) emerging from fallen, infested coffee berries on the ground. Biocontrol Sci Tech 21:1–14.  https://doi.org/10.1080/09583157.2010.517605 CrossRefGoogle Scholar
  251. Villavicencio-Vásquez M, Espinoza-Lozano RF, Pérez-Martínez S, Sosa del Castillo D (2018) Foliar endophyte fungi as candidate for biocontrol against Moniliophthora spp. of Theobroma cacao (Malvaceae) in Ecuador. Acta Biol Colomb 23:235–241.  https://doi.org/10.15446/abc.v23n3.69455 CrossRefGoogle Scholar
  252. Villegas CM, Verdugo JA, Grez AA, Tapia J, Lavandero B (2013) Movement between crops and weeds: temporal refuges for aphidophagous insects in Central Chile. Cienc e Investig Agrar 40:317–326CrossRefGoogle Scholar
  253. Wäckers FL, van Rijn PCJ, Heimpel GE (2008) Honeydew as a food source for natural enemies: making the best of a bad meal? Biol Control 45:176–184.  https://doi.org/10.1016/j.biocontrol.2008.01.007 CrossRefGoogle Scholar
  254. Wade RM, Zalucki MP, Wratten SD, Robinson KA (2008) Conservation biological control of arthropods using artificial food sprays: current status and future challenges. Biol Control 45(2):185–199CrossRefGoogle Scholar
  255. Wharton R, Ovruski S, Gilstrap F (1998) Neotropical Eucoilidae (Cynipoidea) associated with fruit-infesting Tephritidae, with new records from Argentina, Bolivia and Costa Rica. J Hymenopt Res 7:102–115Google Scholar
  256. Wille JE (1956) El control biológico de los insectos agrícolas en el Perú. Proceedings International Congress of Entomology, In, pp 519–523Google Scholar
  257. Winkler K, Wäckers FL, Kaufman LV, Larraz V, van Lenteren JC (2009) Nectar exploitation by herbivores and their parasitoids is a function of flower species and relative humidity. Biol Control 50:299–306.  https://doi.org/10.1016/j.biocontrol.2009.04.009 CrossRefGoogle Scholar
  258. Winters C (2012) Impact of climate change on the poor in Bolivia. Glob Major E-Journal 3:33–71Google Scholar
  259. World Bank (2016) The World Bank Group. https://databankworldbankorg/ Accessed 3 May 2019
  260. Wratten SD, Gurr GM (2000) Synthesis: the future success of biological control. In: Gurr G, Wratten S (eds) Biological control: measures of success. Springer, Dordrecht, pp 405–416.  https://doi.org/10.1007/978-94-011-4014-0_14 CrossRefGoogle Scholar
  261. Wyckhuys KAG, Lu Y, Morales H, Vazquez LL, Legaspi JC, Eliopoulos PA, Hernandez LM (2013) Current status and potential of conservation biological control for agriculture in the developing world. Biol Control 65:152–167.  https://doi.org/10.1016/J.BIOCONTROL.2012.11.010 CrossRefGoogle Scholar
  262. Yábar E (2006) Predación de Bembidion sp., Notiobia peruviana (Dejean) y Metius sp. (Coleoptera: Carabidae) sobre huevos de Premnotrypes latithorax (Pierce) (Coleoptera: Curculionidae) en condiciones de laboratorio. Rev Peru Entomol 45:91–94Google Scholar
  263. Yábar E, Tisoc I (1988) Artrópodos predatores asociados al maíz en el Valle Urubamba, Cusco. Rev Peru Entomol 31:143–146Google Scholar

Copyright information

© Sociedade Entomológica do Brasil 2019

Authors and Affiliations

  1. 1.Lab de Control Biológico, Instituto de Ciencias BiológicasUniv de TalcaTalcaChile
  2. 2.Programa de Doctorado en Ciencias Agrarias, Facultad de Ciencias AgrariasUniv de TalcaTalcaChile
  3. 3.UMR-CNRS 6553 ECOBIO (Écosystèmes, Biodiversité, Évolution)Univ de Rennes 1 (UNIR)RennesFrance
  4. 4.Dept of Management and Conservation of Natural and Agricultural EcosystemsUniv Federal de ViçosaViçosaBrasil

Personalised recommendations