The Fitness and Economic Benefits of Rearing the Parasitoid Telenomus podisi Under Fluctuating Temperature Regime

  • N L Castellanos
  • A F Bueno
  • K Haddi
  • E C Silveira
  • H S Rodrigues
  • E Hirose
  • G Smagghe
  • E E OliveiraEmail author
Biological Control


Successful biological control requires detailed knowledge about the mass rearing conditions of the control agents in order to ensure higher quality of field-released insects. Thus, we investigated whether rearing fluctuating thermal condition would affect the fitness and costs of the parasitoid wasp Telenomus podisi Ashmead (a biocontrol agent used for controlling the Neotropical brown stink bug Euschistus heros (Fabricius)) when compared with parasitoid reared at constant temperature condition, which is commonly used in insect facilities. Parasitoids were reared under either constant (continuous exposure at 25 ± 2°C) or fluctuating temperature conditions (i.e., 30 ± 2°C during day and 20 ± 2°C at night) during four consecutive generations. Our results indicated that tested fluctuating temperature is more suitable for rearing of T. podisi as such temperature condition not only resulted in fitness benefits (e.g., shorter developmental time, longer female longevity, higher fecundity/fertility) but also reduced (approximately 23.5%) the estimated costs for producing the parasitoids. Furthermore, rearing T. podisi under fluctuating temperatures improved tolerance to low constant temperatures (i.e., 20°C) without changing the tolerance to constant high temperatures (30°C) in the fourth generation. Surprisingly, even parasitoids that developed under fluctuating thermal conditions performed better than those reared at constant temperature of 25°C. Collectively, our findings suggest that T. podisi reared under fluctuating thermal condition can tolerate better fluctuating temperatures that normally occur both during long periods of transport and in agricultural ecosystems, which will increase the quality and productivity of mass-reared T. podisi for inundative releases.


Euschistus heros egg parasitoids mass-rearing thermal tolerance augmentative biological control 



The authors gratefully acknowledge Embrapa Soybean for providing the T. podisi wasps and technical support and Embrapa Rice and Beans for allowing the use of its equipment and facilities.

Author Contribution Statement

AFB, EEO, KH, EH, and GS conceived and designed the research. NLC, HSR, and ECS conducted the experiments. AFB, EH, and EEO contributed reagents and/or analytical tools. EEO, NLC, AFB, and KH analyzed the data. EEO, NLC, AFB, KH, GS, and EH wrote the manuscript. All authors read, corrected, and approved the manuscript.

Funding Information

This work was supported by grants from the CAPES Foundation (Financial code 001), the National Council of Scientific and Technological Development (CNPq), the Goias State Research Foundation (FAPEG), and the Minas Gerais State Foundation for Research Aid (FAPEMIG).

Supplementary material

13744_2019_717_MOESM1_ESM.pdf (522 kb)
ESM 1 (PDF 522 kb)


  1. Abram PK, Parent JP, Brodeur J, Boivin G (2016) Size-induced phenotypic reaction norms in a parasitoid wasp: an examination of life-history and behavioural traits. Biol J Linn Soc 117:620–632. CrossRefGoogle Scholar
  2. Abram PK, Boivin G, Moiroux J, Brodeur J (2017) Behavioural effects of temperature on ectothermic animals: unifying thermal physiology and behavioural plasticity. Biol Rev 92:1859–1876. CrossRefPubMedGoogle Scholar
  3. Angilletta MJ Jr, Dunham AE (2003) The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. Am Nat 162:332–342. CrossRefPubMedGoogle Scholar
  4. Angilletta MJ, Niewiarowski PH, Navas CA (2002) The evolution of thermal physiology in ectotherms. J Therm Biol 27:249–268CrossRefGoogle Scholar
  5. Bahar MH, Soroka JJ, Dosdall LM (2013) Constant versus fluctuating temperatures in the interactions between Plutella xylostella (Lepidoptera: Plutellidae) and its larval parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). Environ Entomol 41:1653–1661. CrossRefGoogle Scholar
  6. Bannerman JA, Roitberg BD (2014) Impact of extreme and fluctuating temperatures on aphid-parasitoid dynamics. Oikos 123:89–98. CrossRefGoogle Scholar
  7. Basson CH, Nyamukondiwa C, Terblanche JS (2012) Fitness costs of rapid cold-hardening in Ceratitis capitata. Evolution (N Y) 66:296–304. CrossRefGoogle Scholar
  8. Berger D, Walters R, Gotthard K (2008) What limits insect fecundity? Body size- and temperature-dependent egg maturation and oviposition in a butterfly. Funct Ecol 22:523–529. CrossRefGoogle Scholar
  9. Bernardo U, Iodice L, Sasso R, Pedata PA (2008) Effects of cold storage on Thripobius javae (=T. semiluteus) (Hymenoptera: Eulophidae). Biocontrol Sci Tech 18:921–933. CrossRefGoogle Scholar
  10. Boher F, Trefault N, Estay SA, Bozinovic F (2016) Ectotherms in variable thermal landscapes: a physiological evaluation of the invasive potential of fruit flies species. Front Physiol 7:302. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Borges M, Colazza S, Ramirez-Lucas P et al (2003) Kairomonal effect of walking traces from Euschistus heros (Heteroptera: Pentatomidae) on two strains of Telenomus podisi (Hymenoptera: Scelionidae). Physiol Entomol 28:349–355. CrossRefGoogle Scholar
  12. Borges M, Laumann RA, Silva CCA, et al (2006) Metodologias de criação e manejo de colônias de percevejos da soja (Hemiptera-pentatomidae) para estudos de comportamento e ecologia química. Embrapa Recur Genéticos Biotecnol DocGoogle Scholar
  13. Botto EN, Horny C, Klasmer P, Gerding M (2004) Biological studies on two neotropical egg parasitoid species: Trichogramma nerudai and Trichogramma sp. (Hymenoptera: Trichogrammatidae). Biocontrol Sci Tech 14:449–457. CrossRefGoogle Scholar
  14. Bozinovic F, Bastías DA, Boher F et al (2011) The mean and variance of environmental temperature interact to determine physiological tolerance and fitness. Physiol Biochem Zool 84:543–552. CrossRefPubMedGoogle Scholar
  15. Bozinovic F, Orellana MJM, Martel SI, Bogdanovich JM (2014) Testing the heat-invariant and cold-variability tolerance hypotheses across geographic gradients. Comp Biochem Physiol -Part A Mol Integr Physiol 178:46–50. CrossRefGoogle Scholar
  16. Bozinovic F, Sabat P, Rezende EL, Canals M (2016) Temperature variability and thermal performance in ectotherms: Acclimation, behaviour, and experimental considerations. Evol Ecol Res 17:111–124Google Scholar
  17. Bueno A d F, Batistela MJ, Bueno RCO d F et al (2011) Effects of integrated pest management, biological control and prophylactic use of insecticides on the management and sustainability of soybean. Crop Prot 30:937–945. CrossRefGoogle Scholar
  18. Butler CD, Trumble JT (2010) Predicting population dynamics of the parasitoid Cotesia marginiventris (Hymenoptera: Braconidae) resulting from novel interactions of temperature and selenium. Biocontrol Sci Tech 20:391–406. CrossRefGoogle Scholar
  19. Carrington LB, Armijos MV, Lambrechts L et al (2013) Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits. PLoS One 8:e58824. CrossRefPubMedPubMedCentralGoogle Scholar
  20. CEASA (2019) Relatório - Média Mensal dos Preços. Accessed 21 Jan 2019
  21. Chevin LM, Hoffmann AA (2017) Evolution of phenotypic plasticity in extreme environments. Philos Trans R Soc B Biol Sci 372:20160138CrossRefGoogle Scholar
  22. Chidawanyika F, Terblanche JS (2011) Costs and benefits of thermal acclimation for codling moth, Cydia pomonella (Lepidoptera: Tortricidae): implications for pest control and the sterile insect release programme. Evol Appl 4:534–544. CrossRefPubMedGoogle Scholar
  23. Chidawanyika F, Nyamukondiwa C, Strathie L, Fischer K (2017) Effects of thermal regimes, starvation and age on heat tolerance of the parthenium beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae) following dynamic and static protocols. PLoS One 12:e0169371. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Colinet H, Boivin G (2011) Insect parasitoids cold storage: a comprehensive review of factors of variability and consequences. Biol Control 58:83–95CrossRefGoogle Scholar
  25. Colinet H, Boivin G, Hance T (2007) Manipulation of parasitoid size using the temperature-size rule: fitness consequences. Oecologia 152:425–433. CrossRefPubMedGoogle Scholar
  26. Colinet H, Sinclair BJ, Vernon P, Renault D (2015) Insects in fluctuating thermal environments. Annu Rev Entomol 60:123–140. CrossRefPubMedGoogle Scholar
  27. CONAB (2019a) Preços agrícolas da sociobio e da pesca. Accessed 21 Jan 2019
  28. CONAB (2019b) Acompanhamento da safra brasileira: grãos - Quarto levantamento Janeiro 2019. SAFRA 2018/19 6:1–126Google Scholar
  29. Cônsoli FL, Parra JRP (1995a) Effects of constant and alternating temperatures on Trichogramma galloi Zucchi (Hym., Trichogrammatidae) biology II.—parasitism capacity and longevity. J Appl Entomol 119:667–670. CrossRefGoogle Scholar
  30. Cônsoli FL, Parra JRP (1995b) Effects of constant and alternating temperatures on Trichogramma galloi Zucchi (Hym., Trichogrammatidae) biology. I. Development and thermal requirements. J Appl Entomol 119:415–418. CrossRefGoogle Scholar
  31. Cooper BS, Hammad LA, Fisher NP et al (2012a) In a variable thermal environment selection favors greater plasticity of cell membranes in Drosophila melanogaster. Evolution (N Y) 66:1976–1984. CrossRefGoogle Scholar
  32. Cooper BS, Tharp JM, Jernberg II, Angilletta MJ (2012b) Developmental plasticity of thermal tolerances in temperate and subtropical populations of Drosophila melanogaster. J Therm Biol 37:211–216. CrossRefGoogle Scholar
  33. Corrêa-Ferreira BS, Moscardi F (1995) Seasonal occurrence and host spectrum of egg parasitoids associated with soybean stink bugs. Biol Control 5:196–202. CrossRefGoogle Scholar
  34. Dalvi LP, Pratissoli D, de Carvalho JR et al (2014) Parasitism capacity of Trichogramma pretiosum on eggs of Trichoplusia ni at different temperatures. Acta Sci Agron 36:417. CrossRefGoogle Scholar
  35. De Loof A (2011) Longevity and aging in insects: is reproduction costly, cheap, beneficial or irrelevant? A critical evaluation of the “trade-off” concept. J Insect Physiol 57:1–11CrossRefGoogle Scholar
  36. Delava E, Fleury F, Gibert P (2016) Effects of daily fluctuating temperatures on the Drosophila–Leptopilina boulardi parasitoid association. J Therm Biol 60:95–102. CrossRefPubMedGoogle Scholar
  37. Dey S, Proulx SR, Teotónio H (2016) Adaptation to temporally fluctuating environments by the evolution of maternal effects. PLoS Biol 14:e1002388. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Dubreuil V, Debortoli N, Funatsu B, Nédélec V, Durieux L (2012) Impact of land-cover change in the Southern Amazonia climate: a case study for the region of Alta Floresta, Mato Grosso, Brazil. Environ Monit Assess 184:877–891. CrossRefPubMedGoogle Scholar
  39. Findsen A, Andersen JL, Calderon S, Overgaard J (2013) Rapid cold hardening improves recovery of ion homeostasis and chill coma recovery time in the migratory locust, Locusta migratoria. J Exp Biol 216:1630–1637. CrossRefPubMedGoogle Scholar
  40. Fischer K, Kölzow N, Höltje H, Karl I (2011) Assay conditions in laboratory experiments: is the use of constant rather than fluctuating temperatures justified when investigating temperature-induced plasticity? Oecologia 166:23–33. CrossRefPubMedGoogle Scholar
  41. Folguera G, Bastías DA, Caers J et al (2011) An experimental test of the role of environmental temperature variability on ectotherm molecular, physiological and life-history traits: implications for global warming. Comp Biochem Physiol - A Mol Integr Physiol 159:242–246. CrossRefPubMedGoogle Scholar
  42. Foray V, Desouhant E, Gibert P (2014) The impact of thermal fluctuations on reaction norms in specialist and generalist parasitic wasps. Funct Ecol 28:411–423. CrossRefGoogle Scholar
  43. Fortes P, Magro SR, Panizzi AR, Parra JR (2006) Development of a dry artificial diet for Nezara viridula (L.) and Euschistus heros (Fabricius) (Heteroptera: Pentatomidae). Neotropical Entomol 35:567–572. CrossRefGoogle Scholar
  44. Foucreau N, Jehan C, Lawniczak M, Hervant F (2016) Fluctuating versus constant temperatures: effects on metabolic rate and oxidative damages in freshwater crustacean embryos. Can J Zool 94:591–598. CrossRefGoogle Scholar
  45. Furlong MJ, Zalucki MP (2017) Climate change and biological control: the consequences of increasing temperatures on host–parasitoid interactions. Curr Opin Insect Sci 20:39–44CrossRefGoogle Scholar
  46. Hayashida R, De Freitas BA, Hermel AO et al (2018) Euschistus heros (hemiptera: Pentatomidae) fitness on artificial diets: An approach to optimize mass rearing of Telenomus podisi (Hymenoptera: Platygastridae) for augmentative biological control. J Econ Entomol 111:1605–1613. CrossRefPubMedGoogle Scholar
  47. Huey RB, Berrigan D (2001) Temperature, demography, and ectotherm fitness. Am Nat 158:204. CrossRefPubMedGoogle Scholar
  48. Karl I, Fischer K (2008) Why get big in the cold? Towards a solution to a life-history puzzle. Oecologia 155:215–225. CrossRefPubMedGoogle Scholar
  49. Kingsolver JG, Woods HA (2015) Thermal sensitivity of growth and feeding in Manduca sexta Caterpillars. Physiol Zool 70:631–638. CrossRefGoogle Scholar
  50. Kingsolver JG, Ragland GJ, Diamond SE (2009) Evolution in a constant environment: thermal fluctuations and thermal sensitivity of laboratory and field populations of Manduca sexta. Evolution (N Y) 63:537–541. CrossRefGoogle Scholar
  51. Koppel AL, Herbert DA, Kuhar TP, Kamminga K (2009) Survey of stink bug (Hemiptera: Pentatomidae) egg parasitoids in wheat, soybean, and vegetable crops in Southeast Virginia. Environ Entomol 38:375–379. CrossRefPubMedGoogle Scholar
  52. Kristensen TN, Hoffmann AA, Overgaard J et al (2008) Costs and benefits of cold acclimation in field-released Drosophila. Proc Natl Acad Sci 105:216–221. CrossRefPubMedGoogle Scholar
  53. Kubrak OI, Nylin S, Flatt T et al (2017) Adaptation to fluctuating environments in a selection experiment with Drosophila melanogaster. Ecol Evol 7:3796–3807. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lalouette L, Williams CM, Hervant F et al (2011) Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp Biochem Physiol - A Mol Integr Physiol 158:229–234. CrossRefPubMedGoogle Scholar
  55. Laumann RA, Moraes MCB, Čokl A, Borges M (2007) Eavesdropping on sexual vibratory signals of stink bugs (Hemiptera: Pentatomidae) by the egg parasitoid Telenomus podisi. Anim Behav 73:637–649. CrossRefGoogle Scholar
  56. Levie A, Vernon P, Hance T (2009) Consequences of acclimation on survival and reproductive capacities of cold-stored mummies of Aphidius rhopalosiphi (Hymenoptera: Aphidiinae). J Econ Entomol 98:704–708. CrossRefGoogle Scholar
  57. Manenti T, Sørensen JG, Moghadam NN, Loeschcke V (2014) Predictability rather than amplitude of temperature fluctuations determines stress resistance in a natural population of Drosophila simulans. J Evol Biol 27:2113–2122. CrossRefGoogle Scholar
  58. Manenti T, Loeschcke V, Moghadam NN, Sørensen JG (2015) Phenotypic plasticity is not affected by experimental evolution in constant, predictable or unpredictable fluctuating thermal environments. J Evol Biol 28:2078–2087. CrossRefPubMedGoogle Scholar
  59. Mendes SM, Bueno VHP, Carvalho LM, Reis RP (2005) Custo da produção de Orius insidiosus como agente de controle biológico. Pesqui Agropec Bras 40:441–446. CrossRefGoogle Scholar
  60. Mendoza AC, Da Rocha ACP, Parra JRP (2016) Lyophilized artificial diet for rearing the neotropical Euschistus heros (hemiptera: Pentatomidae). J Insect Sci 16:41. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Mironidis GK, Savopoulou-Soultani M (2008) Development, survivorship, and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) under constant and alternating temperatures. Environ Entomol 37:16–28.[16:DSAROH]2.0.CO,2 CrossRefPubMedGoogle Scholar
  62. Moiroux J, Boivin G, Brodeur J (2018) Ovigeny index increases with temperature in an aphid parasitoid: is early reproduction better when it is hot? J Insect Physiol 109:157–162. CrossRefPubMedGoogle Scholar
  63. Natal RBS, Farias RJR (2017) Boletim Agrometeorológico da Embrapa Soja, Londrina, PRGoogle Scholar
  64. Okuda MS, Yeargan KV (2015) Intra- and interspecific host discrimination in Telenomus podisi and Trissolcus euschisti (Hymenoptera: Scelionidae). Ann Entomol Soc Am 81:1017–1020. CrossRefGoogle Scholar
  65. Orr DB, Boethel DJ (1990) Reproductive potential of Telenomus cristatus and T. podisi (Hymenoptera: Scelionidae), two egg parasitoids of pentatomids (Heteroptera). Ann Entomol Soc Am 83:902–905. CrossRefGoogle Scholar
  66. Overgaard J, Sørensen JG (2008) Rapid thermal adaptation during field temperature variations in Drosophila melanogaster. Cryobiology 56:159–162. CrossRefPubMedGoogle Scholar
  67. Overgaard J, Kristensen TN, Mitchell KA, Hoffmann AA (2011) Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude? Am Nat 178:S80–S96. CrossRefPubMedGoogle Scholar
  68. Pacheco DJP, Corrêa-Ferreira BS (2000) Parasitismo de Telenomus podisi Ashmead (Hymenoptera: Scelionidae) em populações de percevejos pragas da soja. An Soc Entomol Bras 29:295–302. CrossRefGoogle Scholar
  69. Parra JRP (2010) Mass rearing of egg parasitoids for biological control programs. In: Egg parasitoids in agroecosystems with emphasis on Trichogramma. Springer Netherlands, Dordrecht, pp 267–292Google Scholar
  70. Peres WAA, Corrêa-Ferreira BS (2004) Methodology of mass multiplication of Telenomus podisi Ash. and Trissolcus basalis (Woll.) (Hymenoptera: Scelionidae) on eggs of Euschistus heros (Fab.) (Hemiptera: Pentatomidae). Neotropical Entomol 33:457–462. CrossRefGoogle Scholar
  71. Pörtner HO, Bennett AF, Bozinovic F et al (2006) Trade-offs in thermal adaptation: the need for a molecular to ecological integration. Physiol Biochem Zool 79:295–313. CrossRefPubMedGoogle Scholar
  72. Queiroz AP, Bueno AF, Pomari-Fernandes A et al (2017) Low temperature storage of Telenomus remus (Nixon) (Hymenoptera: Platygastridae) and its factitious host Corcyra cephalonica (Stainton) (Lepidoptera: Pyralidae). Neotropical Entomol 46:182–192. CrossRefGoogle Scholar
  73. Ragland GJ, Kingsolver JG (2008) Evolution of thermotolerance in seasonal environments: the effects of annual temperature variation and life-history timing in Wyeomyia smithii. Evolution (N Y) 62:1345–1357. CrossRefGoogle Scholar
  74. Reed DH, Lowe EH, Briscoe DA, Frankham R (2003) Fitness and adaptation in a novel environment: effect of inbreeding, prior environment, and lineage. Evolution (N Y) 57:1822–1828. CrossRefGoogle Scholar
  75. Sarup P, Loeschcke V (2010) Developmental acclimation affects clinal variation in stress resistance traits in Drosophila buzzatii. J Evol Biol 23:957–965. CrossRefPubMedGoogle Scholar
  76. Sgrò CM, Terblanche JS, Hoffmann AA (2015) What can plasticity contribute to insect responses to climate change? Annu Rev Entomol 61:433–451. CrossRefPubMedGoogle Scholar
  77. Sibly RM, Atkinson D (2006) How rearing temperature affects optimal adult size in ectotherms. Funct Ecol 8:486. CrossRefGoogle Scholar
  78. Siddiqui WH, Barlow CA (2015) Population growth of Drosophila melanogaster (Diptera: Drosophilidae) at constant and alternating temperatures. Ann Entomol Soc Am 65:993–1001. CrossRefGoogle Scholar
  79. Siddiqui WH, Barlow CA, Randolph PA (1973) Effects of some constant and alternating temperatures on population growth of the pea aphid, Acyrthosiphon pisvm (Homoptera: Aphididae). Can Entomol 105:145–156. CrossRefGoogle Scholar
  80. Silva CC, Laumann RA, Blassioli MC et al (2008) Euschistus heros mass rearing technique for the multiplication of Telenomus podisi. Pesqui Agropec Bras 43:575–580. CrossRefGoogle Scholar
  81. Silva F, Calizotti G, Panizzi A (2011) Survivorship and egg production of phytophagous Pentatomids in laboratory rearing. Neotropical Entomol 40:35–38. CrossRefGoogle Scholar
  82. Silva GV, Bueno A d F, Neves PMOJ, Favetti BM (2018) Biological Characteristics and parasitism capacity of Telenomus podisi (Hymenoptera: Platygastridae) on eggs of Euschistus heros (Hemiptera: Pentatomidae). J Agric Sci 10:210. CrossRefGoogle Scholar
  83. Sørensen JG, Addison MF, Terblanche JS (2012) Mass-rearing of insects for pest management: challenges, synergies and advances from evolutionary physiology. Crop Prot 38:87–94CrossRefGoogle Scholar
  84. Sørensen CH, Toft S, Kristensen TN (2013) Cold-acclimation increases the predatory efficiency of the aphidophagous coccinellid Adalia bipunctata. Biol Control 65:87–94. CrossRefGoogle Scholar
  85. Terblanche JS (2014) Physiological performance of field-released insects. Curr Opin Insect Sci 4:60–66CrossRefGoogle Scholar
  86. Terblanche JS, Nyamukondiwa C, Kleynhans E (2010) Thermal variability alters climatic stress resistance and plastic responses in a globally invasive pest, the Mediterranean fruit fly (Ceratitis capitata). Entomol Exp Appl 137:304–315. CrossRefGoogle Scholar
  87. Thomson LJ, Robinson M, Hoffmann AA (2001) Field and laboratory evidence for acclimation without costs in an egg parasitoid. Funct Ecol 15:217–221. CrossRefGoogle Scholar
  88. Tomanek L (2010) Variation in the heat shock response and its implication for predicting the effect of global climate change on species’ biogeographical distribution ranges and metabolic costs. J Exp Biol 213:971–979. CrossRefPubMedGoogle Scholar
  89. Torres JB, Pratissoli D, Zanuncio JC (1997) Exigências térmicas e potencial de desenvolvimento dos parasitóides Telenomus podisi Ashmead e Trissolcus brochymenae (Ashmead) em ovos do percevejo predador Podisus nigrispinus (Dallas). An Soc Entomol Bras 26:445–453. CrossRefGoogle Scholar
  90. Torres JB, Musolin DL, Zanuncio JC (2002) Thermal requirements and parasitism capacity of Trissolcus brochymenae (Ashmead) (Hymenoptera: Scelionidae) under constant and fluctuating temperatures, and assessment of development in field conditions. Biocontrol Sci Tech 12:583–593. CrossRefGoogle Scholar
  91. Verdú JR, Casas JL, Lobo JM, Numa C (2010) Dung beetles eat acorns to increase their ovarian development and thermal tolerance. PLoS One 5:e10114. CrossRefPubMedPubMedCentralGoogle Scholar
  92. Visser B, Le Lann C, den Blanken FJ et al (2010) Loss of lipid synthesis as an evolutionary consequence of a parasitic lifestyle. Proc Natl Acad Sci 107:8677–8682. CrossRefPubMedGoogle Scholar
  93. Wernegreen JJ (2012) Mutualism meltdown in insects: bacteria constrain thermal adaptation. Curr Opin Microbiol 15:255–262. CrossRefPubMedPubMedCentralGoogle Scholar
  94. Yang S, Wei J, Yang S, Kuang R (2011) Current status and future trends of augmentative release of Aphidius gifuensis for control of Myzus persicae in China’s Yunnan Province. J Entomol Res Soc 13:87–99Google Scholar
  95. Yeargan KV (1980) Effects of temperature on developmental rate of Telenomus podisi (Hymenoptera: Scelionidae). Ann Entomol Soc Am 73:339–342. CrossRefGoogle Scholar
  96. Yeargan KV (1982) Reproductive capability and longevity of the parasitic wasps Telenomus podisi and Trissolcus euschisti. Ann Entomol Soc Am 75:181–183. CrossRefGoogle Scholar
  97. Zhao MT, Wang Y, Zhou ZS et al (2016) Effects of periodically repeated heat events on reproduction and ovary development of Agasicles hygrophila (Coleoptera: Chrysomelidae). J Econ Entomol 109:1586–1594. CrossRefPubMedGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2019

Authors and Affiliations

  • N L Castellanos
    • 1
    • 2
  • A F Bueno
    • 3
  • K Haddi
    • 1
    • 4
  • E C Silveira
    • 1
  • H S Rodrigues
    • 1
  • E Hirose
    • 3
  • G Smagghe
    • 2
  • E E Oliveira
    • 1
    Email author
  1. 1.Depto de EntomologiaUniv Federal de ViçosaViçosaBrasil
  2. 2.Dept of Plants and Crops, Faculty of Bioscience EngineeringGhent UnivGhentBelgium
  3. 3.EMBRAPA SojaLondrinaBrasil
  4. 4.Depto de EntomologiaUniv Federal de LavrasLavrasBrazil

Personalised recommendations