Advertisement

Neotropical Entomology

, Volume 48, Issue 2, pp 314–322 | Cite as

Combined Application of Entomopathogenic Nematodes and Insecticides in the Control of Leaf-Miner Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) on Tomato

  • P H S SabinoEmail author
  • A S Negrisoli
  • V Andaló
  • C C Filgueiras
  • A MoinoJr
  • F S Sales
Biological Control

Abstract

The present research aimed to investigate the compatibility of entomopathogenic nematodes (EPNs) and registered insecticides for the control of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in the tomato crop, as well as the susceptibility of pupae of T. absoluta to EPNs combined with different percentages below the recommended dose of compatible chemical insecticides in laboratory conditions and in the greenhouse. The species of EPN used was Heterorhabditis amazonensis JPM4. The insecticides used were Actara®, Premio®, and Warrant®. In the compatibility test between the EPNs and insecticides, the viability and infectivity of the nematodes after contact with the insecticides were evaluated. An assessment of the efficacy of the combined application of different doses of the insecticides and the EPNs on T. absoluta was carried out in the laboratory and greenhouse. The efficacy of the combined application of the insecticides and the EPNs on T. absoluta via soil was carried out at application intervals of 1 and 2 weeks. The EPNs were compatible with the three insecticides tested. In the laboratory, there was an additive effect of the combined application of insecticides and H. amazonensis as the dose of the products increased. In the greenhouse assay, the combined application of EPNs and insecticides induced mortality above 48%, and the combined application of EPNs and Warrant® 75% presented 60% of mortality. The weekly and fortnightly applications were effective in controlling T. absoluta, and there was no difference between the insecticides tested when applied together with the nematodes.

Keywords

Associated control biological control Heterorhabditis amazonensis compatibility 

Notes

Acknowledgments

The authors are grateful for financial support from CAPES – the Coordination for Improving Higher Education Personnel.

Authors’ Contributions

PHSS, ASN, AMJR and FSS planed, designed, and executed experimental work; PHSS and ASN conducted data analyses; PHSS, ASN, VA, AMJR, and CCF wrote the manuscript.

References

  1. Adams BJ, Nguyen KB (2002) Taxonomy and systematics. In: Gaugler R (ed) Entomopathogenic nematology. CABI International, Wallingford, pp 1–33Google Scholar
  2. Apablaza J (1992) La polilla del tomate y su manejo. Tattersal 79:12–13Google Scholar
  3. Barrientos ZR, Apasblaza HJ, Norero SA, Estay PP (1998) Temperatura base y constante térmica de desarrollo de la polilla del tomate, Tuta absoluta (Lepidoptera: Gelechiidae). Cienc Invest Agraria 25:133–137CrossRefGoogle Scholar
  4. Batalla-Carrera L, Morton A, García-del-Pino F (2010) Efficacy of entomopathogenic nematodes against the tomato leafminer Tuta absoluta in laboratory and greenhouse conditions. BioControl 55:523–530CrossRefGoogle Scholar
  5. Cabanillas HE, Raulston JR (1995) Impact of Steinernema riobravis (Rhabditida: Steinernematidae) on the control of Helicoverpa zea (Lepidoptera: Noctuidae) in corn. J Econ Entomol 88(1):58–64.  https://doi.org/10.1093/jee/88.1.58
  6. Campos MR, Rodrigues ARS, Silva WM, Silva TBM, Silva VRF, Guedes RNC, Siqueira HAA (2014) Spinosad and the tomato borer Tuta absoluta: a bioinsecticide, an invasive pest threat, and high insecticide resistance. PLoS One 9:e103235.  https://doi.org/10.1371/journal.pone.0103235 CrossRefGoogle Scholar
  7. De Cock A, De Clerq P, Tirry L, Degheele D (1996) Toxicity of diafenthiuron and imidacloprid to the predatory bug Podisus maculiventris (Heteroptera: Pentatomidae). Environ Entomol 25(2):476–480.  https://doi.org/10.1093/ee/25.2.476 CrossRefGoogle Scholar
  8. Dubovskiy IM, Kryukov VY, Benkovskaya GV, Yaroslavtseva ON, Surina EV, Glupov VV (2010) Activity of detoxificative enzymes system and encapsulation rate in Colorado potato beetle Leptinotarsa decemlineata larvae under organophosphorus insecticide treatment and entomopathogenic fungus Metharizium anisopliae infection. Euroasian Entomol J 9:577–582Google Scholar
  9. Dubovskiy IM, Whitten MMA, Yaroslavtseva ON, Greig C, Kryukov VY, Grizanova EV, Mukherjee K, Vilcinskas A, Glupov VV, Butt TM (2013) Can insects develop resistance to insect pathogenic fungi? PLoS One 8:e60248.  https://doi.org/10.1371/journal.pone.0060248 CrossRefGoogle Scholar
  10. Dutky SR, Thompson LV, Cantwe GE (1964) A technique for the mass propagation of the DD-136 nematode. J Insect Pathol 6:417–422Google Scholar
  11. European and Mediterranean Plant Prot Organization (EPPO) (2010) Archives of the EPPO Reporting Service. http://archives.eppo.org/EPPO/Reporting/Reporting_Archives.htm. Accessed 10 April 2017
  12. Garcia-del-Pino F, Alabern X, Morton A (2013) Efficacy of soil treatments of entomopathogenic nematodes against the larvae, pupae and adults of Tuta absoluta and their interaction with the insecticides used against this insect. BioControl 58:723–731CrossRefGoogle Scholar
  13. Girling RD, Ennis D, Dillon AB, Griffin CT (2010) The lethal and sub-lethal consequences of entomopathogenic nematode infestation and exposure for adult pine weevils, Hylobius abietis (Coleoptera: Curculionidae). J Invertebr Pathol 104(3):195–202.  https://doi.org/10.1016/j.jip.2010.04.003 CrossRefGoogle Scholar
  14. Gözel Ç, Kasap İ (2015) Efficacy of entomopathogenic nematodes against the tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in tomato field. Turk J Entomol 39(3):229–237.  https://doi.org/10.16970/ted.84972
  15. Imms AD, Richards OW, Davies RG (1977) Imms’ general textbook of entomology. Springer Netherlands, London, p 432Google Scholar
  16. Kaakeh N, Kaakeh W, Bennett GW (1996) Topical toxicity of imidacloprid, ftpronil, and seven conventional insecticides to the adult convergent lady beetle (Coleoptera: Coccinellidae). Entomol Sci 31:315–322CrossRefGoogle Scholar
  17. Kaya HK, Hara AH (1981) Susceptibility of various species of lepidopterous pupae to the entomogenous nematode Neoaplectona carpocapsae. J Nematol 13:291–294Google Scholar
  18. Kaya HK, Stock SP (1997) Techniques in insect nematology. In: Lacey LA (ed) Manual of techniques in insect pathology. Academic Press, California, pp 281–324CrossRefGoogle Scholar
  19. Koppenhöfer AM, Fuzy EM (2008) Effect of the anthranilic diamide insecticide, chlorantraniliprole, on Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae) efficacy against white grubs (Coleoptera: Scarabaeidae). BioControl 45:93–102Google Scholar
  20. Koppenhöfer AK, Kaya HK (1998) Synergism of imidacloprid and an entomopathogenic nematode: a novel approach to white grub control in turfgrass. J Econ Entomol 91(3):618–623.  https://doi.org/10.1093/jee/91.3.618 CrossRefGoogle Scholar
  21. Koppenhöfer AM, Grewal PS, Kaya HK (2000) Synergism of entomopathogenic nematodes and imidacloprid against white grubs: the mechanism. Entomol Exp Appl 94:283–293CrossRefGoogle Scholar
  22. Koppenhöfer AM, Cowles RC, Cowles EA, Fuzy EM, Baumgartner L (2002) Comparison of neonicotinoid insecticides as synergists for entomopathogenic nematodes. BioControl 24:90–97Google Scholar
  23. Li XY, Cowles RS, Cowles EA, Gaugler R, Cox-Foster DL (2007) Relationship between the successful infection by entomopathogenic nematodes and the host immune response. Int J Parasitol 37:365–374.  https://doi.org/10.1016/j.ijpara.2006.08.009 CrossRefGoogle Scholar
  24. Negrisoli AS, Garcia MS, Barbosa-Negrisoli CRC (2010) Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) with registered insecticides for Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) under laboratory conditions. Crop Prot 29:545–549.  https://doi.org/10.1016/j.cropro.2009.12.012 CrossRefGoogle Scholar
  25. Nishimatsu T, Jackson J (1998) Interaction of insecticides, entomopathogenic nematodes, and larvae of the western corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 9(2): 410–418Google Scholar
  26. Parra JRP (1998) Criação de insetos para estudos com patógenos. In: Alves SB (ed) Controle microbiano de insetos. Piracicaba, FEALQ, pp 1015–1038Google Scholar
  27. Peters A, Poullot D (2004) Side effects of surfactants and pesticides on entomopathogenic nematodes assessed using advanced IOBC guidelines. IOBC/WPRS Bulletin 27:67–72Google Scholar
  28. Pye AE, Burman M (1978) Neoaplectana carpocapsae: infection and reproduction in large pine weevil larvae, Hylobius abietis. Exp Parasitol 46:1–11CrossRefGoogle Scholar
  29. R CORE TEAM (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  30. Reyes M, Rocha K, Alarc L, Siegwart M, Sauphanor B (2012) Metabolic mechanisms involved in the resistance of field populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) to spinosad. Pestic Biochem Physiol 102(1):45–50.  https://doi.org/10.1016/j.pestbp.2011.10.008 CrossRefGoogle Scholar
  31. Robertson JL, Preslier HK (1992) Pesticide Bioassays with Arthropods. Boca Raton, Florida, p 125.Google Scholar
  32. Rovesti L, Deseo KV (1990) Compatibility of chemical pesticides with the entomopathogenic nematodes, Steinernema carpocapsae Weiser and S. feltiae Filipjev (Nematoda: Steinernematidae). Nematologica 36:237–245CrossRefGoogle Scholar
  33. Sabino PHS, Sales FS, Guevara EJ, Moino A Jr, Filgueiras CC (2014) Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) with insecticides used in the tomato crop. Nematoda 1:e03014.  https://doi.org/10.4322/nematoda.03014 Google Scholar
  34. Shapiro-Ilan DI, Gouge DH, Piggott SJ, Fife JP (2006) Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biol Control 38(1):124–133.  https://doi.org/10.1016/j.biocontrol.2005.09.005 CrossRefGoogle Scholar
  35. Silva GA, Picanço MC, Bacci L, Crespo ALB, Rosado JF, Guedes RNC (2011) Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Manag Sci 67(8):913–920.  https://doi.org/10.1002/ps.2131 CrossRefGoogle Scholar
  36. Siqueira HAA, Guedes RNC, Picanço MC (2000) Insecticide resistance in populations of Tula absoluta (Lepidoptera: Gelechiidae). Agric For Entomol 2:147–153.  https://doi.org/10.1046/j.1461-9563.2000.00062.x CrossRefGoogle Scholar
  37. Türköz S, Kaşkavalcı G (2016) Determination of the efficacy of some entomopathogenic nematodes against Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) under laboratory conditions. Türk Entomol Dergisi 40(2):175–183.  https://doi.org/10.16970/ted.92606 Google Scholar
  38. Urbaneja A, Vercher R, Navarro V, Porcuna JL, García María F (2007) La polilla del tomate, Tuta absoluta. Phytoma 194:16–23Google Scholar
  39. Van Damme VM, Beck BK, Berckmoes E, Moerkens R, Wittemans L, Vis R, Nuyttens D, Casteels HF, Maes M, Tirry L, Clercq P (2016) Efficacy of entomopathogenic nematodes against larvae of Tuta absoluta in the laboratory. Pest Manag Sci 72(9):1702–1709.  https://doi.org/10.1002/ps.4195 CrossRefGoogle Scholar
  40. Zappala L, Siscaro G, Biondi A, Molla O, González-Cabrera J, Urbaneja A (2011) Efficacy of sulphur on Tuta absoluta and its side effects on the predator Nesidiocoris tenuis. J Appl Entomol 136: 401–409.  https://doi.org/10.1111/j.1439-0418.2011.01662.x

Copyright information

© Sociedade Entomológica do Brasil 2018

Authors and Affiliations

  1. 1.Faculdade de AgronomiaUniv José do Rosário Vellano / UNIFENASAlfenasBrasil
  2. 2.Empresa Brasileira de Pesquisa AgropecuáriaUnidade de Execução de Pesquisa. Embrapa Tabuleiros CosteirosMaceioBrasil
  3. 3.Univ Federal de UberlândiaInstituto de Ciências AgrariasMonte CarmeloBrasil
  4. 4.Depto de EntomologiaUniv Federal de LavrasLavrasBrasil

Personalised recommendations