Advertisement

Neotropical Entomology

, Volume 48, Issue 1, pp 1–17 | Cite as

Current Strategies and Future Outlook for Managing the Neotropical Tomato Pest Tuta absoluta (Meyrick) in the Mediterranean Basin

  • M GiorginiEmail author
  • E Guerrieri
  • P Cascone
  • L Gontijo
Forum

Abstract

The invasion of new regions by exotic pests has been more than ever a critical issue that warrants coordinated international actions to manage established populations and prevent further spreading. Invasive insects can undermine the ecological equilibrium of both natural and agricultural ecosystems. Moreover, increasing temperatures due to climatic change exacerbate this problem by allowing pests to further reach regions previously considered unsuitable. The tomato pinworm Tuta absoluta (Meyrick) (Lepidoptera) is an exotic pest native to Peru that has spread beyond Neotropical America. In Europe, its occurrence was reported in Spain in 2006, and thereafter, it has spread throughout the Mediterranean Basin and further into Africa and part of Asia. While T. absoluta can cause losses to tomato production all over the globe, the differences in each invaded region (e.g., climate, vegetation) may affect its population dynamics and, consequently, management protocols. Therefore, the main intent of this forum paper is to explore how European growers and researchers are dealing with T. absoluta in the Mediterranean area. As for many other invasive pests, the best approach has been the adoption of integrated pest management (IPM). Specifically, the integration of biological control agents (e.g., mirid predators and egg parasitoids), microbial insecticides (i.e., Bacillus thuringiensis), selective chemical insecticides, and sex pheromone-based control has proven adequate, especially in tomato greenhouses. Nonetheless, some of the challenges ahead include the development of resistant tomato cultivars, the management of wild vegetation and companion plants to optimize the conservation of natural enemies and their effectiveness at the crop level, the management of insecticide resistance, and the improvement of sex pheromone-based tactics.

Keywords

Augmentation and conservation biological control invasive species IPM mirid predators parasitoids tomato pinworm 

Notes

Author Contributions

MG, EG and LG conceived, designed, and wrote the initial manuscript. PC focused on plant breeding section; based on written contributions from all authors, MG, LG, and EG organized the final manuscript. All authors read, revised, and approved the manuscript.

Funding Information

This work was supported by the UE FP7/2007-2013 project ASCII under grant agreement PIRSES-GA-2012-318246. Thanks also to FAPEMIG (Fundação de Amparo a Pesquisa no Estado de Minas Gerais) for supporting studies regarding the management of Tuta absoluta.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Abbes K, Chermiti B (2014) Propensity of three Tunisian populations of the tomato leafminer Tuta absoluta (Lepidoptera: Gelechiidae) for deuterotokous parthenogenetic reproduction. Afr Entomol 22:538–544Google Scholar
  2. Abbes K, Harbi A, Chermiti B (2012) The tomato leafminer Tuta absoluta (Meyrick) in Tunisia: current status and management strategies. EPPO Bull 42:226–233Google Scholar
  3. Abbes K, Biondi A, Zappalà L, Chermiti B (2014) Fortuitous parasitoids of the invasive tomato leafminer Tuta absoluta in Tunisia. Phytoparasitica 42:85–92Google Scholar
  4. Abbes K, Biondi A, Kurtulus A, Ricupero M, Russo A, Siscaro G, Chermiti B, Zappalà L (2015) Combined non-target effects of insecticide and high temperature on the parasitoid Bracon nigricans. PLoS One 10:e0138411.  https://doi.org/10.1371/journal.pone.0138411 Google Scholar
  5. Ahmed HAA, Onarıcı S, Bakhsh A, Akdoğan G, Karakoç ÖC, Özcan SF, Aydın G, Aasım M, Ünlü L, Sancak C, Naimov S, Özcan S (2017) Targeted expression of insecticidal hybrid SN19 gene in potato leads to enhanced resistance against Colorado potato beetle (Leptinotarsa decemlineata Say) and tomato leafminer (Tuta absoluta Meyrick). Plant Biotechnol Rep 11:315–329Google Scholar
  6. Allegrucci N, Velazquez MS, Russo ML, Perez E, Scorsetti AC (2011) Endophytic colonisation of tomato by the entomopathogenic fungus Beauveria bassiana: the use of different inoculation techniques and their effects on the tomato leafminer Tuta absoluta (Lepidoptera: Gelechiidae). J Plant Prot Res 57:205–211Google Scholar
  7. Alomar O, Riudavets J, Castañe C (2006) Macrolophus caliginosus in the biological control of Bemisia tabaci on greenhouse melons. Biol Control 36:154–162Google Scholar
  8. Anastasaki E, Drizou F, Milonas PG (2018) Electrophysiological and oviposition responses of Tuta absoluta females to herbivore-induced volatiles in tomato plants. J Chem Ecol 44:288–298Google Scholar
  9. Arnò J, Gabarra R (2011) Side effects of selected insecticides on the Tuta absoluta (Lepidoptera: Gelechiidae) predators Macrolophus pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae). J Pest Sci 84:513–520Google Scholar
  10. Arnó J, Sorribas R, Prat M, Matas M, Pozo C, Rodríguez D, Garreta A, Gómez A, Gabarra R (2009) Tuta absoluta, a new pest in IPM tomatoes in the northeast of Spain. IOBC/WPRS Bull 49:203–208Google Scholar
  11. Arnò J, Gabarra R, Liu T-X, Simmons AM, Gerling D (2010) Natural enemies of Bemisia tabaci: predators and parasitoids. In: Stansly PA, Naranjo SE (eds) Bemisia: bionomics and management of a global pest. Springer, Dordrecht, pp 385–421Google Scholar
  12. Arnó j, Oveja MF, Gabarra R (2018) Selection of flowering plants to enhance the biological control of Tuta absoluta using parasitoids. Biol Control 122:41–50Google Scholar
  13. Athanassiou CG, Kavallieratos NG, Benelli G, Losic D, Usha Rani P, Desneux N (2018) Nanoparticles for pest control: current status and future perspectives. J Pest Sci 91:1–15Google Scholar
  14. Aviron S, Poggi S, Varennes YD, Lefèvre A (2016) Local landscape heterogeneity affects crop colonization by natural enemies of pests in protected horticultural cropping systems. Agric Ecosyst Environ 227:1–10Google Scholar
  15. Bacci L, Silva EM, Silva GA, Silva LJ, Rosado JF, Samuel RI, Picanço MC (2018) Natural mortality factors of tomato leafminer Tuta absoluta in open-field tomato crops in the South America. Pest Manag Sci.  https://doi.org/10.1002/ps.5173
  16. Balzan MV (2017) Flowering banker plants for the delivery of multiple agroecosystem services. Arthropod Plant Interact 11:743–754Google Scholar
  17. Balzan MV, Moonen A-C (2014) Field margin vegetation enhances biological control and crop damage suppression from multiple pests in organic tomato fields. Entomol Exp Appl 150:45–65Google Scholar
  18. Balzan MV, Wäckers FL (2013) Flowers to selectively enhance the fitness of a host-feeding parasitoid: adult feeding by Tuta absoluta and its parasitoid Necremnus artynes. Biol Control 67:21–31Google Scholar
  19. Balzan MV, Bocci G, Moonen A-C (2016a) Landscape complexity and field margin vegetation diversity enhance natural enemies and reduce herbivory by Lepidoptera pests on tomato crop. Biocontrol 61:141–154Google Scholar
  20. Balzan MV, Bocci G, Moonen A (2016b) Utilisation of plant functional diversity in wild flower strips for the delivery of multiple agroecosystem services. Entomol Exp Appl 158:304–319Google Scholar
  21. Barros EC, Bacci L, Picanco MC, Martins JC, Rosado JF, Silva GA (2015) Physiological selectivity and activity reduction of insecticides by rainfall to predatory wasps of Tuta absoluta. J Environ Sci Health B 50:45–54Google Scholar
  22. Benvenga SR, Fernandes QA, Gravena S (2007) Tomada de decisão de controle da traça-do-tomateiro através de armadilhas com feromônio sexual. Hortic Bras 25:164–169Google Scholar
  23. Biondi A, Mommaerts V, Smagghe G, Vinuela E, Zappalà L, Desneux N (2012) The non-target impact of spinosyns on beneficial arthropods. Pest Manag Sci 68:1523–1536Google Scholar
  24. Biondi A, Desneux N, Amiens-Desneux E, Siscaro G, Zappalà L (2013a) Biology and developmental strategies of the Palaearctic parasitoid Bracon nigricans (Hymenoptera: Braconidae) on the neotropical moth Tuta absoluta (Lepidoptera: Gelechiidae). J Econ Entomol 106:1638–1647Google Scholar
  25. Biondi A, Zappalà L, Stark JD, Desneux N (2013b) Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? PLoS One 8:e76548.  https://doi.org/10.1371/journal.pone.0076548 Google Scholar
  26. Biondi A, Zappalà L, Di Mauro A, Tropea Garzia G, Russo A, Desneux N, Siscaro G (2016) Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis? BioControl 61:79–90Google Scholar
  27. Biondi A, Guedes RNC, Wan F-H, Desneux N (2018) Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annu Rev Entomol 63:239–258Google Scholar
  28. Bleeker PM, Mirabella R, Diergaarde PJ, VanDoorn A, Tissier A, Kant MR, Prins M, de Vos M, Haring MA, Schuurink RC (2012) Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Proc Natl Acad Sci 109:20124–20129Google Scholar
  29. Bompard A, Jaworski CC, Bearez P, Desneux N (2013) Sharing a predator: can an invasive alien pest affect the predation on a local pest? Popul Ecol 55:433–440Google Scholar
  30. Borgi I, Dupuy JW, Blibech I, Lapaillerie D, Lomenech AM et al (2016) Hyper-proteolytic mutant of Beauveria bassiana, a new biological control agent against the tomato borer. Agron Sustain Dev 4:1–9Google Scholar
  31. Bottega DB, de Souza BHS, Rodrigues NEL et al (2017) Resistant and susceptible tomato genotypes have direct and indirect effects on Podisus nigrispinus preying on Tuta absoluta larvae. Biol Control 106:27–34Google Scholar
  32. Bouayad Alam S, Dib MEA, Djabou N et al (2017) Essential oils as biocides for the control of fungal infections and devastating pest (Tuta absoluta) of tomato (Lycopersicon esculentum Mill.). Chem Biodivers 14:1–9Google Scholar
  33. Branco MC, França FH, Medeiros MA, Leal JGT (2001) Uso de inseticidas para o controle da traça do-tomateiro e traça das crucíferas: um estudo de caso. Hortic Bras 19:60–63Google Scholar
  34. Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41:423–431Google Scholar
  35. Brenard N, Sluydts V, De Bruyn L, Leirs H, Moerkens R (2018) Food supplementation to optimize inoculative release of the predatory bug Machrolophus pygmaeus in sweet pepper. Entomol Exp Appl (in press)  https://doi.org/10.1111/eea.12704
  36. Cabello T, Gallego JR, Vila E, Soler A et al (2009) Biological control of the South American tomato pinworm, Tuta absoluta (Lep.: Gelechiidae), with releases of Trichograma achaeae (Hym.: Trichogrammatidae) in tomato greenhouses of Spain. IOBC/WPRS Bull 49:225–230Google Scholar
  37. Cagnotti CL, Hernández CM, Andormo AV, Viscarret M, Riquelme M, Botto EN, López SN (2016) Acceptability and suitability of Tuta absoluta eggs from irradiated parents to parasitism by Trichogramma nerudai and Trichogramma pretiosum (Hymenoptera: Trichogrammatidae). Agric For Entomol 18:198–205Google Scholar
  38. Calvo FJ, Bolckmans K, Belda JE (2012a) Release rate for a pre-plant application of Nesidiocoris tenuis for Bemisia tabaci control in tomato. BioControl 57:809–817Google Scholar
  39. Calvo FJ, Soriano J, Bolckmans K, Belda JE (2012b) A successful method for whitefly and Tuta absoluta control in tomato. Evaluation after two years of application in practice. IOBC/WPRS Bull 80:237–244Google Scholar
  40. Calvo FJ, Soriano JD, Stansly PA, Belda JE (2016) Can the parasitoid Necremnus tutae (Hymenoptera: Eulophidae) improve existing biological control of the tomato leafminer Tuta absoluta (Lepidoptera: Gelechiidae)? Bull Entomol Res 106:502–511Google Scholar
  41. Camargo RA, Barbosa GO, Presotto Possignolo I, Peres LEP et al (2016) RNA interference as a gene silencing tool to control Tuta absoluta in tomato (Solanum lycopersicum). PeerJ 4:e2673.  https://doi.org/10.7717/peerj.2673 Google Scholar
  42. Campolo O, Cherif A, Ricupero M, Siscaro G, Grissa-Lebdi K, Russo A, Cucci LM, di Pietro P, Satriano C, Desneux N, Biondi A, Zappalà L, Palmeri V (2017) Citrus peel essential oil nanoformulations to control the tomato borer, Tuta absoluta: chemical properties and biological activity. Sci Rep 7:1–10.  https://doi.org/10.1038/s41598-017-13413-0 Google Scholar
  43. Campos MR, Biondi A, Adiga A, Guedes RNC, Desneux N (2017) From the Western Palaearctic region to beyond: Tuta absoluta 10 years after invading Europe. J Pest Sci 90:787–796Google Scholar
  44. Cano M, Vila E, Janssen D, Bretones D, Salvador E, Lara L, Tellez MM (2009) Selection of refuges for Nesidiocoris tenuis (Het.:Miridae) and Orius laevigatus (Het.:Anthocoridae): virus reservoir risk assessment. IOBC/WPRS Bull 49:281–286Google Scholar
  45. Caparros Megido R, Haubruge E, Verheggen FJ (2012) First evidence of deuterotokous parthenogenesis in the tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). J Pest Sci 85:409–412Google Scholar
  46. Caparros Megido R, Haubruge E, Verheggen FJ (2013) Pheromone-based management strategies to control the tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae). A review. Biotechnol Agron Soc Environ 17:475–482Google Scholar
  47. Cascone P, Carpenito S, Slotsbo S, Iodice L, Sørensen JG, Holmstrup M, Guerrieri E (2015) Improving the efficiency of Trichogramma achaeae to control Tuta absoluta. BioControl 6:761–771Google Scholar
  48. Castañé C, Arnó J, Gabarra R, Alomar O (2011) Plant damage to vegetable crops by zoophytophagous mirid predators. Biol Control 59:22–29Google Scholar
  49. Chailleux A, Desneux N, Seguret J, Do Thi Khanh H, Maignet P, Tabone E (2012) Assessing European egg parasitoids as a mean of controlling the invasive South American tomato pinworm Tuta absoluta. PLoS One 7:e48068.  https://doi.org/10.1371/journal.pone.0048068 Google Scholar
  50. Chailleux A, Biondi A, Han P, Tabone E, Desneux N (2013) Suitability of the pest–plant system Tuta absoluta (Lepidoptera: Gelechiidae)–tomato for Trichogramma (Hymenoptera: Trichogrammatidae) parasitoids and insights for biological control. J Econ Entomol 106:2310–2321Google Scholar
  51. Chailleux A, Desneux N, Arnó J, Gabarra R (2014) Biology of two key Palaearctic larval ectoparasitoids when parasitizing the invasive pest Tuta absoluta. J Pest Sci 87:441–448Google Scholar
  52. Chailleux A, Droui A, Bearez P, Desneux N (2017) Survival of a specialist natural enemy experiencing resource competition with an omnivorous predator when sharing the invasive prey Tuta absoluta. Ecol Evol 7:8329–8337Google Scholar
  53. Chermiti B, Abbes K (2012) Comparison of pheromone lures used in mass trapping to control the tomato leafminer Tuta absoluta (Meyrick, 1917) in industrial tomato crops in Kairouan (Tunisia). EPPO Bull 42(2):241–248Google Scholar
  54. Cocco A, Deliperi S, Delrio G (2012) Potential of mass trapping for Tuta absoluta management in greenhouse tomato crops using light and pheromone traps. IOBC-WPRS Bull 80:319–324Google Scholar
  55. Cocco A, Deliperi S, Delrio G (2013) Control of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in greenhouse tomato crops using the mating disruption technique. J Appl Entomol 137:16–28Google Scholar
  56. Cocco A, Deliperi S, Lentini A, Mannu R, Delrio G (2015) Seasonal phenology of Tuta absoluta (Lepidoptera: Gelechiidae) in protected and open-field crops under Mediterranean climatic conditions. Phytoparasitica 43:713–724Google Scholar
  57. Crisol Martínez E, van der Bloom J (2018) La avispa parasitoide Necremnus tutae lidera la lucha contra Tuta absoluta en primavera. https://coexphal.wordpress.com/2018/04/10/la-avispa-parasitoide-necremnus-tutae-lidera-la-lucha-contra-tuta-absoluta-en-primavera/
  58. Czosnek H (2007) Tomato yellow leaf curl virus disease: management, molecular biology, breeding for resistance. Springer, Dordrecht 420 pGoogle Scholar
  59. Dapp M (2017) Evaluation of the field efficacy of biopesticides based on granulovirus (TuabGV, PhopGV) and of attract-and-kill to control Tuta absoluta (Meyrick). Master thesis, study program Agrarwissenschaften M.Sc., University of Hohenheim, Stuttgart, GermanyGoogle Scholar
  60. de Almeida Melo AL, Soccol VT, Soccol CR (2014) Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Crit Rev Biotechnol 36:317–326Google Scholar
  61. de Azevedo SM, Ventura Faria M, Maluf WR, Barneche de Oliveira AC, de Freitas JA (2003) Zingiberene-mediated resistance to the South American tomato pinworm derived from Lycopersicon hirsutum var. hirsutum. Euphytica 134:347–351Google Scholar
  62. De Backer L, Bawin T, Schott M et al (2017) Betraying its presence: identification of the chemical signal released by Tuta absoluta-infested tomato plants that guide generalist predators toward their prey. Arthropod Plant Interact 11:111–120Google Scholar
  63. de Oliveira CM, Vargas de Oliveira J, Rafael D, Barbosa S, Oliveira Breda M, de França SM, Ribeiro Duarte BL (2017) Biological parameters and thermal requirements of Trichogramma pretiosum for the management of the tomato fruit borer (Lepidoptera: Crambidae) in tomatoes. Crop Prot 99:39–44Google Scholar
  64. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106Google Scholar
  65. Desneux N, Wajnberg E, Wyckhuys KAG, Burgio G, Arpaia S, Narváez-Vasquez CA, González-Cabrera J, Catalán Ruescas D, Tabone E, Frandon J, Pizzol J, Poncet C, Cabello T, Urbaneja A (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, history of invasion and prospects for biological control. J Pest Sci 83:197–215Google Scholar
  66. Desneux N, Luna MG, Guillemaud T, Urbaneja A (2011) The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J Pest Sci 84:403–408Google Scholar
  67. di Castri F (1989) History of biological invasions with special emphasis on the Old World. In: Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ et al (eds) Biological invasions: a global perspective. Wiley, Chichester, pp 1–30Google Scholar
  68. Dias DM, Resende JTV, Faria MV, Camargo LKP, Chagas RR, Lima IP (2013) Selection of processing tomato genotypes with high acyl sugar content that are resistant to the tomato pinworm. Genet Mol Res 12:381–389Google Scholar
  69. Dieckhoff C, Tatman KM, Hoelmer KA (2017) Natural biological control of Halyomorpha halys by native egg parasitoids: a multi-year survey in northern Delaware. J Pest Sci 90:1143–1158Google Scholar
  70. El-Arnaouty SA, Pizzol J, Galal HH, Kortam MN, Afifi AI et al (2014) Assessment of two Trichogramma species for the control of Tuta absoluta in North African tomato greenhouses. Afr Entomol 22:801–809Google Scholar
  71. Ferracini C, Ingegno BL, Navone P, Ferrari E, Mosti M, Tavella L, Alma A (2012) Adaptation of indigenous larval parasitoids to Tuta absoluta (Lepidoptera: Gelechiidae) in Italy. J Econ Entomol 105:1311–1319Google Scholar
  72. Fontes J, Sanchez Roja I, Tavares J, Oliveira L (2018) Lethal and sublethal effects of various pesticides on Trichogramma achaeae (Hymenoptera: Trichogrammatidae). J Econ Entomol 111:1219–1226Google Scholar
  73. Francati S, Alma A, Ferracini C, Pollini A, Dindo ML (2015) Indigenous parasitoids associated with Dryocosmus kuriphilus in a chestnut production area of Emilia Romagna (Italy). Bull Insectology 68:127–134Google Scholar
  74. Gabarra R, Alomar O, Castañe C, Goula M, Albajes R (2004) Movement of greenhouse whitefly and its predators between in and outside of Mediterranean greenhouses. Agric Ecosyst Environ 102:341–348Google Scholar
  75. Gabarra R, Arnó J, Lara L, Verdú MJ, Ribes A, Beitia F, Urbaneja A, Téllez MM, Mollá O, Riudavets J (2014) Native parasitoids associated with Tuta absoluta in the tomato production areas of the Spanish Mediterranean coast. BioControl 59:45–54Google Scholar
  76. Gebiola M, Bernardo U, Ribes A, Gibson GAP (2015) An integrative study of Necremnus Thomson (Hymenoptera: Eulophidae) associated with invasive pests in Europe and North America: taxonomic and ecological implications. Zool J Linnean Soc 173:352–423Google Scholar
  77. Gerling D, Alomar O, Arnò J (2001) Biological control of Bemisia tabaci using predators and parasitoids. Crop Prot 20:779–799Google Scholar
  78. Ghaderi S, Fathipour Y, Asgari S, Trumble J (2017) Susceptibility of seven selected tomato cultivars to Tuta absoluta (Lepidoptera: Gelechiidae): implications for its management. J Econ Entomol 110:421–429Google Scholar
  79. Giorgini M, Viggiani G (2000) A compared evaluation of Encarsia formosa Gahan and Encarsia pergandiella Howard (Hymenoptera: Aphelinidae) as biological control agents of Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae) on tomato under greenhouse in southern Italy. IOBC–WPRS Bull 23(1):109–116Google Scholar
  80. Giraud M (2015) Trichogramma achaeae as an IPM tool in tomato greenhouses. Book of Abstracts, Congress IPM Innovation in Europe, Poznań, Poland January 14–16, 2015: 43 https://www.ior.poznan.pl/plik,2056,giraud-marion-pdf.pdf
  81. Gómez Valderrama JA, Barrera G, López-Ferber M, Belaich M, Ghiringhelli PD, Villamizar L (2018) Potential of betabaculoviruses to control the tomato leafminer Tuta absoluta (Meyrick). J Appl Entomol 142:66–77Google Scholar
  82. González-Cabrera J, Mollá O, Montón H, Urbaneja A (2011) Efficacy of Bacillus thuringiensis (Berliner) in controlling the tomato borer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). BioControl 56:71–80Google Scholar
  83. Goudarzvande Chegini S, Abbasipour H (2017) Chemical composition and insecticidal effects of the essential oil of cardamom, Elettaria cardamomum on the tomato leaf miner, Tuta absoluta. Toxin Rev 36:12–17Google Scholar
  84. Goudarzvande Chegini S, Abbasipour H, Karimi J, Askarianzadeh A (2018) Toxicity of Shirazi thyme, Zataria multiflora essential oil to the tomato leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae). Int J Trop Insect Sci.  https://doi.org/10.1017/S1742758418000097
  85. Guedes RNC, Picanço MC (2012) The tomato borer Tuta absoluta in South America: pest status, management and insecticide resistance. EPPO Bull 42:211–216Google Scholar
  86. Guillemaud T, Blin A, Le Goff I et al (2015) The tomato borer, Tuta absoluta, invading the Mediterranean Basin, originates from a single introduction from Central Chile. Sci Rep 5:8371.  https://doi.org/10.1038/srep08371 Google Scholar
  87. Haddi K, Berger M, Bielza P, Cifuentes D, Field LM, Gorman K, Rapisarda C, Williamson MS, Bass C (2012) Identification of mutations associated with pyrethroid resistance in the voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta). Insect Biochem Mol Biol 42:506–513Google Scholar
  88. Hamza R, Pérez-Hedo M, Urbaneja A, Rambla JL, Granell A, Gaddour K, Beltrán JP, Cañas LA (2018) Expression of two barley proteinase inhibitors in tomato promotes endogenous defensive response and enhances resistance to Tuta absoluta. BMC Plant Biol 18:1–14.  https://doi.org/10.1186/s12870-018-1240-6 Google Scholar
  89. Harbi A, Abbes K, Chermiti B (2012) Evaluation of two methods for the protection of tomato crops against the tomato leafminer Tuta absoluta (Meyrick) under greenhouses in Tunisia. EPPO Bull 42(2):317–321Google Scholar
  90. Harpaz LS, Graph S, Rika K, Azolay L, Rozemberg T, Yakov T, et al (2011) IPM of Tuta absoluta in Israel. EPPO/IOBC/NEPPO joint international symposium on management of Tuta absoluta (tomato borer), 16–18 November 2011, Agadir, Morocco, p 42 http://archives.eppo.org/MEETINGS/2011conferences/tuta/brochuretuta.pdf
  91. Ingegno BL, Pansa MG, Tavella L (2009) Tomato colonization by predatory bugs (Heteroptera: Miridae) in agroecosystems of NW Italy. IOBC/WPRS Bull 49:287–291Google Scholar
  92. Ingegno BL, Ferracini C, Gallinotti D, Tavella L, Alma A (2013) Evaluation of the effectiveness of Dicyphus errans (Wolff) as predator of Tuta absoluta (Meyrick). Biol Control 67:246–252Google Scholar
  93. Ingegno BL, Candian V, Psomadelis I, Bodino N et al (2017) The potential of host plants for biological control of Tuta absoluta by the predator Dicyphus errans. Bull Entomol Res 107:340–348Google Scholar
  94. Isman MB (2000) Plant essential oils for pest and disease management. Crop Prot 19:603–608Google Scholar
  95. Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66Google Scholar
  96. Isman MB (2015) A renaissance for botanical insecticides? Pest Manag Sci 71:1587–1590Google Scholar
  97. Jaworski CC, Chailleux A, Bearez P, Desneux N (2015) Apparent competition between major pests reduces pest population densities on tomato crop, but not yield loss. J Pest Sci 88:793–803Google Scholar
  98. Khan ZR, James DG, Midega CAO, Pickett JA (2008) Chemical ecology and conservation biological control. Biol Control 45:210–224Google Scholar
  99. Klieber J, Reineke A (2015) The entomopathogen Beauveria bassiana has epiphytic and endophytic activity against the tomato leaf miner Tuta absoluta. J Appl Entomol 140:80–589Google Scholar
  100. Kortam MN, El Arnaouty SA, Fatnassi H, Afifi AI, Pizzol J, Suloma A, Poncet C (2017) The effect of microclimatic parameters on two Trichogramma species used to control Tuta absoluta. IOBC-WPRS Bull 124:131–137Google Scholar
  101. Koul B, Srivastava S, Sanyal I, Tripathi B, Sharma V, Amla D (2014) Transgenic tomato line expressing modified Bacillus thuringiensis cry1Ab gene showing complete resistance to two lepidopteran pests. SpringerPlus 3:84.  https://doi.org/10.1186/2193-1801-3-84 Google Scholar
  102. Krechemer FS, Foerster LA (2017) Development, reproduction, survival, and demographic patterns of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) on different commercial tomato cultivars. Neotrop Entomol 46:694–700Google Scholar
  103. Lambion J (2011) Functional biodiversity in southern France: a method to enhance predatory mirid bug populations. Acta Hortic 915:165–170Google Scholar
  104. Lambion J (2014) Flower strips as winter shelters for predatory miridae bugs. Acta Hortic 1041:149–156Google Scholar
  105. Leckie BM, Halitschke R, De Jong DM et al (2014) Quantitative trait loci regulating the fatty acid profile of acylsugars in tomato. Mol Breed 34:1201–1213Google Scholar
  106. Lee MS, Albajes R, Eizaguirre M (2014) Mating behaviour of female Tuta absoluta (Lepidoptera: Gelechiidae): polyandry increases reproductive output. J Pest Sci 87:429–439Google Scholar
  107. Lietti MMM, Botto E, Alzogaray RA (2005) Insecticide resistance in Argentine populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop Entomol 34:113–119Google Scholar
  108. Lima IP, Resende JTV, Resende JTV et al (2015) Indirect selection of industrial tomato genotypes rich in zingiberene and resistant to Tuta absoluta Meyrick. Genet Mol Res 14:15081–15089Google Scholar
  109. López E (1991) Polilla del tomate: problema crítico para la rentabilidad del cultivo de verano. Empresa y Avance Agrícola 1:6–7Google Scholar
  110. Manco E, Lombardi N, Cascone P, Carpenito S, Panza R, Quarto R, Poleij L, de Kogel WJ, Guerrieri E, Ruocco M, Giorgini M (2015) Application of pheromone-based control of Tuta absoluta in greenhouse tomato IPM in Campania, southern Italy. Congress “IPM Innovation in Europe”, Poznan, Poland, January 14–16, 2015. Book of Abstracts: 42 https://www.ior.poznan.pl/plik,1892,book-of-abstracts-ipm-innovation-in-europe-pdf.pdf
  111. Martinou AF, Seraphides N, Stavrinides MC (2014) Lethal and behavioral effects of pesticides on the insect predator Macrolophus pygmaeus. Chemosphere 96:167–173Google Scholar
  112. Medeiros MA, Vilela NJ, França FH (2006) Technical and economic efficiency of biological control of the South American tomato pinworm in protected environment. Hortic Bras 24:180–184Google Scholar
  113. Messelink GJ, Bennison J, Alomar O, Ingegno BL, Tavella L, Shipp L, Palevsky E, Wackers FL (2014) Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects. BioControl 59:377–393Google Scholar
  114. Miller B, Anfora G, Buffington M, Daane KM et al (2015) Seasonal occurrence of resident parasitoids associated with Drosophila suzukii in two small fruit production regions of Italy and the USA. Bull Insectology 68:255–263Google Scholar
  115. Mollà O, Gonzàlez-Cabrera J, Urbaneja A (2011) The combined use of Bacillus thuringiensis and Nesidiocoris tenuis against the tomato borer Tuta absoluta. BioControl 56:883–891Google Scholar
  116. Mollà O, Biondi A, Alonso-ValienteM UA (2014) A comparative life history study of two mirid bugs preying on Tuta absoluta and Ephestia kuehniella eggs on tomato crops: implications for biological control. BioControl 59:175–183Google Scholar
  117. Moretti MDL, Sanna-Passino G, Demontis S, Bazzoni E (2002) Essential oil formulations useful as a new tool for insect pest control. AAPS Pharm Sci Technol 3:64–74Google Scholar
  118. Nannini M, Manca L, Giorgini M (2006) Natural parasitism of Bemisia tabaci and Trialeurodes vaporariorum in an horticultural area of Sardinia, Italy. IOBC–WPRS Bull 29(4):59–64Google Scholar
  119. Naselli M, Urbaneja A, Siscaro G, Jaques JA, Zappalà L, Flors V, Pérez-Hedo M (2016) Stage-related defense response induction in tomato plants by Nesidiocoris tenuis. Int J Mol Sci 17:1210.  https://doi.org/10.3390/ijms17081210 Google Scholar
  120. Naselli M, Zappalà L, Gugliuzzo A, Tropea Garzia G, Biondi A, Rapisarda C, Cincotta F, Condurso C, Verzera A, Siscaro G (2017) Olfactory response of the zoophytophagous mirid Nesidiocoris tenuis to tomato and alternative host plants. Arthropod Plant Interact 11:121–131Google Scholar
  121. Paini DR, Sheppard AW, Cook DC, Barro PJ, Worner SP, Thomas MB (2016) Global threat to agriculture from invasive species. Proc Natl Acad Sci 113:7575–7559Google Scholar
  122. Parolin P, Bresch C, Ottenwalder L, Ion-Scotta M, Brun R, Fatnassi H, Poncet C (2013) False yellowhead (Dittrichia viscosa) causes over infestation with the whitefly pest (Trialeurodes vaporariorum) in tomato crops. Int J Agric Policy Res 1:311–318Google Scholar
  123. Parra JRP, Zucchi RA (2004) Trichogramma in Brazil: feasibility of use after twenty years of research. Neotrop Entomol 33:271–228Google Scholar
  124. Parrella G, Gognalons P, Gebre-Selassiè K, Vovlas C, Marchoux G (2003) An update of the host range of tomato spotted wilt virus. J Plant Pathol 85(4, Special issue):227–264Google Scholar
  125. Passos L, Soares M, Costa M, Michaud JP, Freire B, Carvalho G (2017) Physiological susceptibility of the predator Macrolophus basicornis (Hemiptera: Miridae) to pesticides used to control of Tuta absoluta (Lepidoptera: Gelechiidae). Biocontrol Sci Tech 27:1082–1095Google Scholar
  126. Pavela R, Benelli G (2016) Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci 21:1000–1007Google Scholar
  127. Perdikis D, Fantinou A, Lykouressis D (2011) Enhancing pest control in annual crops by conservation of predatory Heteroptera. Biol Control 59:13–21Google Scholar
  128. Pereira RR, Picanço MC, Santana PA, Moreira SS, Guedes RNC, Corrêa AS (2014) Insecticide toxicity and walking response of three pirate bug predators of the tomato leaf miner Tuta absoluta. Agric For Entomol 16:293–301Google Scholar
  129. Pérez-Aguilar DA, Araújo Soares M, Passos LC, Martínez AM, Pineda S, Carvalho GA (2018) Lethal and sublethal effects of insecticides on Engytatus varians (Heteroptera: Miridae), a predator of Tuta absoluta (Lepidoptera: Gelechiidae). Ecotoxicology 27:719–728Google Scholar
  130. Perez-Hedo M, Urbaneja A (2016) The zoophytophagous predator Nesidiocoris tenuis: a successful but controversial biocontrol agent in tomato crops. In: Horowitz AR, Ishaaya I (eds) Advances in insect control and resistance management. Springer, Cham, pp 121–138Google Scholar
  131. Perez-Hedo M, Bouagga S, Jaques JA, Flors V, Urbaneja A (2015) Tomato plant responses to feeding behavior of three zoophytophagous predators (Hemiptera: Miridae). Biol Control 86:46–51Google Scholar
  132. Perez-Hedo M, Suay R, Alonso M, Ruocco M, Giorgini M, Poncet C, Urbaneja A (2017) Resilience and robustness of IPM in protected horticulture in the face of potential invasive pests. Crop Prot 97:119–127Google Scholar
  133. Perez-Hedo M, Rambla JL, Granell A, Urbaneja A (2018) Biological activity and specificity of Miridae-induced plant volatiles. BioControl 63:203–213Google Scholar
  134. Peterson JA, Ode PJ, Oliveira-Hofman C, Harwood JD (2016) Integration of plant defense traits with biological control of arthropod pests: challenges and opportunities. Front Plant Sci 7:1794.  https://doi.org/10.3389/fpls.2016.01794 Google Scholar
  135. Picanço MC, Leite GLD, Guedes RNC, Silva EA (1998) Yield loss in trellised tomato affected by insecticidal sprays and plant spacing. Crop Prot 17:447–452Google Scholar
  136. Pratissoli D, Thuler RT, Andrade GS, Marozzi Zanotti LC, Faria da Silva A (2005) Estimativa de Trichogramma pretiosum para controle de Tuta absoluta em tomateiro estaqueado. Pesq Agrop Brasileira 40:715–718Google Scholar
  137. Proffit M, Birgersson G, Bengtsson M, Reis R Jr, Witzgall P, Lima E (2011) Attraction and oviposition of Tuta absoluta females in response to tomato leaf volatiles. J Chem Ecol 37:565–574Google Scholar
  138. Pyšek P, Richardson DM (2010) Invasive species, environmental change and management, and health. Annu Rev Environ Resour 35:25–55Google Scholar
  139. Queiroz OS, Ramos RS, Gontijo LM, Picanço MC (2015) Functional response of three species of predatory pirate bugs attacking eggs of Tuta absoluta (Lepidoptera: Gelechiidae). Environ Entomol 44:246–251Google Scholar
  140. Rahman T, Spafford H, Broughton S (2010) Compatibility of spinosad with predaceous mites (Acari) used to control Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Pest Manag Sci 67:993–1003Google Scholar
  141. Rakha M, Zekeya N, Sevgan S, Musembi M, Ramasamy S, Hanson P (2017) Screening recently identified whitefly/spider mite-resistant wild tomato accessions for resistance to Tuta absoluta. Plant Breed 136:562–568Google Scholar
  142. Riley DG, Pappu HR (2004) Tactics for management of thrips (Thysanoptera: Thripidae) and tomato spotted wilt virus in tomato. J Econ Entomol 97:1648–1658Google Scholar
  143. Rizzo MC, Margiotta V, Caleca V (2011) Necremnus artynes parassitoide di Tuta absoluta su pomodoro, melanzana e Solanum nigrum in serra a conduzione biologica. Atti del XXIII Congresso Nazionale Italiano di Entomologia, 13–16 June 2011, Genova, Italy: 356 http://www.accademiaentomologia.it/pdf/XXIII%20CNIE%20Genova,%2013-16%20giugno%202011-ISBN.pdf
  144. Roditakis E, Skarmoutsou C, Staurakaki M (2013) Toxicity of insecticides to populations of tomato borer Tuta absoluta (Meyrick) from Greece. Pest Manag Sci 69:834–840Google Scholar
  145. Roditakis E, Vasakis E, Grispou M, Stavrakaki M, Nauen R, Gravouil M, Bassi A (2015) First report of Tuta absoluta resistance to diamide insecticides. J Pest Sci 88:9–16Google Scholar
  146. Roditakis E, Vasakis E, García-Vidal L, Martínez-Aguirre M, Rison JL, Haxaire-Lutun MO, Nauen R, Tsagkarakou A, Bielza P (2018) A four-year survey on insecticide resistance and likelihood of chemical control failure for tomato leaf miner Tuta absoluta in the European/Asian region. J Pest Sci 91:421–435Google Scholar
  147. Saker M, Salama H, Salama M, El-Banna A, Abdel Ghany N (2011) Production of transgenic tomato plants expressing Cry 2Ab gene for the control of some lepidopterous insects endemic in Egypt. J Genet Eng Biothechnol 9:149–155Google Scholar
  148. Sannino L, Piro F, Proto S, Savino F, Griffo R, Conte A, Punzi F (2014) Efficacia di Isonet® T, un nuovo sistema per il contenimento di Tuta absoluta mediante confusione sessuale. Atti Giornate Fitopatologiche, Chianciano Terme (SI), Italy, 18–21 March 2014, Vol 1:193–200 http://www.giornatefitopatologiche.it/it/elenco/24/2014/efficacia-di-isonet-t-un-nuovo-sistema-per-il-contenimento-di-tuta-absoluta-mediante-confusione-sessuale/4395
  149. Schmitz H (2016) Evaluation of the biological activity of granulovirus isolates from Tuta absoluta (TuabGV) and Phthorimaea operculella (PhopGV) in its primary and secondary host Tuta absoluta (Meyrick) (Lep., Gelechiidae). Master thesis, Study program Agrarwissenschaften M.Sc., University of Hohenheim, Stutgart, GermanyGoogle Scholar
  150. Selale H, Dağlı F, Mutlu N, Doğanlar S, Frary A (2017) Cry1Ac-mediated resistance to tomato leaf miner (Tuta absoluta) in tomato. Plant Cell Tissue Organ Cult 131:65–73Google Scholar
  151. Shashank PR, Twinkle S, Chandrashekar K et al (2018) Genetic homogeneity in south American tomato pinworm, Tuta absoluta: a new invasive pest to oriental region. 3 Biotech 8:350.  https://doi.org/10.1007/s13205-018-1374-0 Google Scholar
  152. Silva Ataide LM, Arce CCM, Curtinhas JN et al (2017) Flight behavior and oviposition of Tuta absoluta on susceptible and resistant genotypes of Solanum lycopersicum. Arthropod Plant Interact 11:567–575Google Scholar
  153. Silva GA, Picanço MC, Bacci L, Crespo ALB, Rosado JF, Guedes RNC (2011) Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Manag Sci 67:913–920Google Scholar
  154. Silva JE, Assis CP, Ribeiro LM, Siqueira HA (2016) Field-evolved resistance and cross-resistance of Brazilian Tuta absoluta (Lepidoptera: Gelechiidae) populations to diamide insecticides. J Econ Entomol 109:2190–2195Google Scholar
  155. Siqueira HAA, Guedes RNC, Picanco MC (2000a) Insecticide resistance in populations of Tuta absoluta (Lepidoptera: Gelechiidae). Agric For Entomol 2:147–153Google Scholar
  156. Siqueira HAA, Guedes RNC, Picanco MC (2000b) Cartap resistance and synergism in populations of Tuta absoluta (Lep., Gelechiidae). J Appl Entomol 124:233–238Google Scholar
  157. Sohrabi F, Nooryazdan HR, Gharati B, Saeidi Z (2017) Plant resistance to the moth Tuta absoluta (Meyrick) (Lepidoptera:Gelechiidae) in tomato cultivars. Neotrop Entomol 46:203–209Google Scholar
  158. Stenberg JA (2017) A conceptual framework for integrated pest management. Trends Plant Sci 22:759–769Google Scholar
  159. Sylla S, Brévault T, Diarra K, Bearez P, Desneux N (2016) Life-history traits of Macrolophus pygmaeus with different prey foods. PLoS One 11(11):e0166610.  https://doi.org/10.1371/journal.pone.0166610 Google Scholar
  160. Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594Google Scholar
  161. Thuiller W, Richardson DM, Pysek P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:2234–2250Google Scholar
  162. Toepfer S, Kuhlmann U (2004) Survey for natural enemies of the invasive alien chrysomelid, Diabrotica virgifera virgifera, in Central Europe. BioControl 49:385–395Google Scholar
  163. Torchin ME, Mitchell CE (2004) Parasites, pathogens, and invasions by plants and animals. Front Ecol Environ 2:183–190Google Scholar
  164. Umpiérrez ML, Lagreca ME, Cabrera R, Grille G, Rossini C (2012) Essential oils from Asteraceae as potential biocontrol tools for tomato pests and diseases. Phytochem Rev 11:339–350Google Scholar
  165. Urbaneja A, González-Cabrera J, Arnó J, Gabarra R (2012) Prospects for the biological control of Tuta absoluta in tomatoes of the Mediterranean basin. Pest Manag Sci 68:1215–1222Google Scholar
  166. Urbaneja-Bernat P, Mollà O, Alonso M, Bolkcmans K, Urbaneja A, Tena A (2015) Sugars as complementary alternative food for the establishment of Nesidiocoris tenuis in greenhouse tomato. J Appl Entomol 139:161–167Google Scholar
  167. USDA–APHIS—United States Department of Agriculture, Animal and Plant Health Inspection Service (2014) Federal Order for U.S. imports of host materials of tomato leaf miner (Tuta absoluta). USDA. https://www.aphis.usda.gov/aphis/ourfocus/planthealth/import-information/federal-import-orders. Accessed 02 Oct 2017
  168. Vacas S, Alfaro C, Primo J, Navarro-Llopis V (2011) Studies on the development of a mating disruption system to control the tomato leafminer, Tuta absoluta Povolny (Lepidoptera: Gelechiidae). Pest Manag Sci 67:1473–1480Google Scholar
  169. van der Blom J, Karakitsos K, Giakoumaki BM, Robledo-Camacho A (2016) Control de Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) por Necremnus tutae en cultivos de tomate de invernadero en Almería. Phytoma-España 276:24–28Google Scholar
  170. van der Velden N, Suay R, Urbaneja A, Giorgini M, Ruocco M, Poncet C, Lefèvre A (2012) Recent developments and market opportunities for IPM in greenhouse tomatoes in southern Europe; consequences for advanced IPM toolboxes and greenhouse engineering. LEI Memorandum 12-077, p 41 http://library.wur.nl/WebQuery/wurpubs/428335
  171. Van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and noninvasive plant species. Ecol Lett 13:235–245Google Scholar
  172. van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2018a) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63:39–59Google Scholar
  173. van Lenteren JC, Bueno VHP, Calvo FJ, Calixto AM, Montes FC (2018b) Comparative effectiveness and injury to tomato plants of three Neotropical mirid predators of Tuta absoluta (Lepidoptera: Gelechiidae). J Econ Entomol 111:1080–1086Google Scholar
  174. Vargas H (1970) Observations about the biology and natural enemies of the tomato moth, Gnorimoschema absoluta (Meyrick) (Lepidoptera: Gelechiidae). Idesia 1:75–110Google Scholar
  175. Werdin González JO, Gutiérrez MM, Ferrero AA, Band BF (2014) Essential oils nanoformulations for stored-product pest control—characterization and biological properties. Chemosphere 100:130–138Google Scholar
  176. Zappalà L, Bernardo U, Biondi A, Cocco A, Deliperi S, Delrio G, Giorgini M, Pedata PC, Rapisarda C, Tropea Garzia G, Siscaro G (2012) Recruitment of native parasitoids by the exotic pest Tuta absoluta (Meyrick) in southern Italy. Bull Insectology 65:51–61Google Scholar
  177. Zappalà L, Biondi A, Alma A, Al-Jboory IJ, Arno J, Bayram A, Chailleux A, El-Arnaouty A, Gerling D, Guenaoui Y, Shaltiel-Harpaz L, Siscaro G, Stavrinides M, Tavella L, Aznar RV, Urbaneja A, Desneux N (2013) Natural enemies of the South American moth, Tuta absoluta, in Europe, North Africa and Middle East, and their potential use in pest control strategies. J Pest Sci 86:635–647Google Scholar
  178. Ziaei Madbouni MA, Samih MA, Qureshi JA, Biondi A, Namvar P (2017) Compatibility of insecticides and fungicides with the zoophytophagous mirid predator Nesidiocoris tenuis. PLoS One 12(11):e0187439.  https://doi.org/10.1371/journal.pone.0187439 Google Scholar

Copyright information

© Sociedade Entomológica do Brasil 2018

Authors and Affiliations

  1. 1.Institute for Sustainable Plant ProtectionNational Research Council of Italy (CNR)NaplesItaly
  2. 2.Programa de Pós-Graduação Manejo e Conservação de Ecossistemas Naturais e AgráriosUniv Federal de ViçosaFlorestalBrasil

Personalised recommendations