Advertisement

Neotropical Entomology

, Volume 48, Issue 1, pp 162–170 | Cite as

Lethal and Sublethal Toxicity of Insecticides to the Lacewing Ceraeochrysa Cubana

  • G R RugnoEmail author
  • O Z Zanardi
  • J R P Parra
  • P T Yamamoto
Pest Management
  • 89 Downloads

Abstract

The lethal and sublethal effects of 11 insecticides on the predator Ceraeochrysa cubana (Hagen) were assessed under laboratory conditions. First-instar larvae and adults ≤ 48 h old were sprayed with the highest insecticides doses allowed to control Diaphorina citri Kuwayama in the citrus crop. The survival and duration rates of the different development stages, sex ratio, pre-oviposition period, fecundity, and fertility of the insects were evaluated. In the larval bioassay, chlorpyrifos and malathion had lethal effect which none larvae survived. Azadirachtin, lambda-cyhalothrin + chlorantraniliprole, lambda-cyhalothrin + thiamethoxam, and thiamethoxam had lethal and sublethal effects that did not allow to estimate the life table parameters because the low number of couples formed. Esfenvalerate, imidacloprid WG and SC, phosmet, and pyriproxyfen had sublethal effects which were reflected in the net reproductive rate and in the intrinsic rate of natural increase. In bioassay using adults, none of the individuals survived in the chlorpyrifos, lambda-cyhalothrin + chlorantraniliprole, lambda-cyhalothrin + thiamethoxam, malathion, or thiamethoxam treatments, and the azadirachtin, esfenvalerate, imidacloprid WG and SC, phosmet, and pyriproxyfen treatments were significantly lower compared to the control. None of the insecticides was harmless to first-instar larvae and adults of C. cubana under laboratory conditions showing their potential to reduce the efficiency of this predator.

Keywords

Integrated pest management life table selectivity predator green lacewing 

Notes

Funding information

This project received financial support from the Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES).

References

  1. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267CrossRefGoogle Scholar
  2. Amarasekare KG, Shearer PW (2013) Comparing effects of insecticides on two green lacewings species, Chrysoperla johnsoni and Chrysoperla carnea (Neuroptera: Chrysopidae). J Econ Entomol 106:1126–1133CrossRefGoogle Scholar
  3. Belasque J Jr, Bassanezi RB, Yamamoto PT, Ayres AJ, Tachibana A, Violante AR, Tank A Jr, Di Giorgi F, Tersi FEA, Menezes GM, Dragone J, Jank RH Jr, Bové M (2010) Lessons from huanglongbing management in São Paulo State, Brazil. J Plant Pathol 92:285–302Google Scholar
  4. Beloti VH, Alves GR, Araújo DFD, Picoli MM, Moral RA, Demétrio CGB, Yamamoto PT (2015) Lethal and sublethal effects of insecticides used on citrus, on the ectoparasitoid Tamarixia radiata. PLoS One 10:e0132128CrossRefGoogle Scholar
  5. Biondi A, Campolo O, Desneux N, Siscaro G, Palmeri V, Zappalà L (2015) Life stage-dependent susceptibility of Aphytis melinus DeBach (Hymenoptera: Aphelinidae) to two pesticides commonly used in citrus orchards. Chemosphere 128:142–147CrossRefGoogle Scholar
  6. Bueno AF, Freitas S (2001) Efeito do hexythiazox e imidacloprid sobre ovos larvas e adultos de Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae). Rev Ecossistema 26:74–77Google Scholar
  7. Carvalho GA, Bezerra D, Souza B, Carvalho CF (2003) Efeitos de inseticidas usados na cultura do algodoeiro sobre Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae). Neotrop Entomol 32:699–706CrossRefGoogle Scholar
  8. Castilhos RV, Grützmacher AD, Nava DE, Zotti MJ, Siqueira PRB (2011) Seletividade de agrotóxicos utilizados em pomares de pêssego a adultos do predador Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae). Rev Bras Frutic 33:73–80CrossRefGoogle Scholar
  9. Chen XD, Gill TA, Pelz-Stelinski KS, Stelinski LL (2017) Risk assessment of various insecticides used for management of Asian citrus psyllid, Diaphorina citri in Florida citrus, against honey bee, Apis mellifera. Ecotoxicology 26:351–359CrossRefGoogle Scholar
  10. Cordeiro EMG, Corrêa AS, Venzon M, Guedes RNC (2010) Insecticide survival and behavioral avoidance in the lacewings Chrysoperla externa and Ceraeochrysa cubana. Chemosphere 81:1352–1357CrossRefGoogle Scholar
  11. Cortez-Mondaca E, López-Arroyo JI, Rodriguez-Ruíz L, Partida-Valenzuela MP, Pérez-Márquez J (2016) Chrysopidae species associated with Diaphorina citri Kuwayama in citrus and predation capacity of Sinaloa, Mexico. Rev Mex Cien Agric 7:363–374Google Scholar
  12. Cosme LV, Carvalho GA, Moura AP, Parreira DS (2009) Toxicidade de óleo de nim para pupas e adultos de Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae). Arq Inst Biol 76:233–238Google Scholar
  13. Costa DB, Souza B, Carvalho GA, Carvalho CF (2003) Residual action of insecticides to larvae of Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae) under greenhouse conditions. Ciênc Agrotecnol 27:835–839CrossRefGoogle Scholar
  14. Daane KM, Yokota GY (1997) Release strategies affect survival and distribution of green lacewings (Neuroptera: Chrysopidae) in augmentation programs. Biol Control 26:455–464Google Scholar
  15. Desneux N, Denoyelle R, Kaiser L (2006a) A multi-step bioassay to assess the effect of the deltamethrin on the parasitic wasp Aphidius ervi. Chemosphere 65:1697–1706CrossRefGoogle Scholar
  16. Desneux N, Ramirez-Romero R, Kaiser L (2006b) Multistep bioassay to predict recolonization potential of emerging parasitoids after a pesticide treatment. Environ Toxicol Chem 25:2675–2682CrossRefGoogle Scholar
  17. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106CrossRefGoogle Scholar
  18. Devine GJ, Furlong MJ (2007) Insecticide use: Contexts and ecological consequences. Agric Hum Values 24:281–306CrossRefGoogle Scholar
  19. Dinter A, Brugger K, Bassi A, Frost NM, Woodward MD (2008) Chlorantraniliprole (DPX-E2Y45, DuPont™ Rynaxypyr®, Coragen® and Altacor® insecticide) - a novel anthranilic diamide insecticide - demonstrating low toxicity and low risk for beneficial insects and predatory mites. IOBC/WPRS Bull 35:128–135Google Scholar
  20. Freitas S, Penny ND (2001) The green lacewings (Neuroptera: Chrysopidae) of Brazilian agro-ecosystems. Proc Calif Acad Sci 52:245–395Google Scholar
  21. Garzón A, Medina P, Amor F, Viñuela E, Budia F (2015) Toxicity and sublethal effects of six insecticides to last instar larvae and adults of the biocontrol agents Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) and Adalia bipunctata (L.) (Coleoptera: Coccinellidae). Chemosphere 132:87–93CrossRefGoogle Scholar
  22. Giolo FP, Medina P, Grützmacher AD, Viñuela E (2009) Effects of pesticides commonly used in peach orchards in Brazil on predatory lacewings Chrysoperla carnea under laboratory conditions. BioControl 54:625–635CrossRefGoogle Scholar
  23. Godoy MS, Carvalho GA, Carvalho BF, Lasmar O (2010) Seletividade fisiológica de inseticidas em duas espécies de crisopídeos. Pesq Agrop Brasileira 45:1253–1258CrossRefGoogle Scholar
  24. Gontijo PC, Moscardini VF, Michaud JP, Carvalho GA (2014) Non-target effects of chlorantraniliprole and thiamethoxam on Chrysoperla carnea when employed as sunflower seed treatments. J Pest Sci 87:711–719CrossRefGoogle Scholar
  25. Grafton-Cardwell EE, Stelinski LL, Stansly PA (2013) Biology and management of Asian citrus psyllid, vector of the huanglongbing pathogens. Annu Rev Entomol 58:413–432CrossRefGoogle Scholar
  26. Hassan SA, Bigler F, Bogenschütz H, Boller E, Brun J, Calis JNM, Coremans-Pelseneer J, Duso C, Grove A, Heimbach U, Helyer N, Hokkanen H, Lewis GB, Mansour F, Moreth L, Polgar L, Samsøe-Petersen L, Sauphanor B, Stäubli A, Sterk G, Vainio A, Van de Veire M, Viggiani G, Vogt H (1994) Results of the sixth joint pesticide testing programme of the IOBC/WPRS-Working Group “Pesticides and beneficial organisms”. Entomophaga 39:107–119CrossRefGoogle Scholar
  27. He Y, Zhao J, Zheng Y, Desneux N, Wu K (2012) Lethal effect of imidacloprid on the coccinellid predator Serangium japonicum and sublethal effects on predator voracity and on functional response to the whitefly Bemisia tabaci. Ecotoxicology 21:1291–1300CrossRefGoogle Scholar
  28. Hinde J, Demétrio CGB (1998) Overdispersion: models and estimation. Comput Stat Data Anal 27:151–170CrossRefGoogle Scholar
  29. IBD - Instituto Biodinâmico -IBD certificações (2014) Available at: http://www.ibd.com.br/ClientCert_Default.aspx. Accessed on: 29 Jul. 2014
  30. Lopez-Arroyo JI, Tauber CA, Tauber MJ (1999) Comparative life histories of the predators Ceraeochrysa cincta, C. cubana, and C. smithi (Neuroptera: Chrysopidae). Ann Entomol Soc An 92:208–217CrossRefGoogle Scholar
  31. Maia AHN, Luiz AJB, Campanhola C (2000) Statistical inference on associated fertility life table parameters using jackknife technique: computational aspects. J Econ Entomol 93:511–518CrossRefGoogle Scholar
  32. Mandour NS (2009) Influence of spinosad on immature and adult stages of Chrysoperla carnea (stephens) (Neuroptera: Chrysopidae). BioControl 54:93–102CrossRefGoogle Scholar
  33. MAPA, Ministério da Agricultura, Pecuária e Abastecimento (2016) AGROFIT: Sistema de Agrotóxicos Fitossanitários. Brasília, Brazil. http://extranet.agricultura.gov.br/agrofit_cons/principal_agrofit_cons
  34. Medina P, Smagghe G, Budia F, del Estal P, Tirry L, Viñuela E (2002) Significance of penetration, excretion, and transovarial uptake to toxicity of three insect growth regulators in predatory lacewing adults. Arch Insect Biochem Physiol 51:91–101CrossRefGoogle Scholar
  35. Medina P, Smagghe G, Budia F, Tirry L, Viñuela E (2003a) Toxicity and absorption of azadirachtin, diflubenzuron, pyriproxyfen, and tebufenozide after topical application in predatory larvae of Chrysoperla carnea (Neuroptera: Chrysopidae). Environ Entomol 32:196–203CrossRefGoogle Scholar
  36. Medina P, Budia F, del Estal P, Viñuela E (2003b) Effects of three modern insecticides, pyriproxyfen, spinosad and tebufenozide, on survival and reproduction of Chrysoperla carnea adults. Ann Appl Biol 142:55–61CrossRefGoogle Scholar
  37. Medina P, Budia F, del Estal P, Viñuela E (2004) Influence of azadirachtin, a botanical insecticide, on Chrysoperla carnea (Stephens) reproduction: toxicity and ultrastructural approach. J Econ Entomol 97:43–50CrossRefGoogle Scholar
  38. Meyer JS, Ingersoll CG, McDonald LL, Boyce MS (1986) Estimating uncertainty in population growth rates: jackknife vs. bootstrap techniques. Ecology 67:1156–1166CrossRefGoogle Scholar
  39. Michaud JP (2001) Evaluation of green lacewings, Chrysoperla plorabunda (Fitch) (Neurop. Chrysopidae), for augmentative release against Toxoptera citricida (Hom. Aphididae) in citrus. J Appl Entomol 125:383–388CrossRefGoogle Scholar
  40. Moscardini VF, Gontijo PC, Carvalho GA, Oliveira RL, Maia JB, Silva FF (2013) Toxicity and sublethal effects of seven insecticides to eggs of the flower bug Orius insidiosus (Say) (Hemiptera: Anthocoridae). Chemosphere 92:490–496CrossRefGoogle Scholar
  41. Neetan, Aggarwal N (2013) Relative toxicity of some insecticides against Chrysoperla zastrowisillemi (Esbe-Petersen) under laboratory conditions. J Cotton Res Dev 27:119–123Google Scholar
  42. Nelder J, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc A 135:370–384CrossRefGoogle Scholar
  43. Ono EK, Zanardi OZ, Aguiar SKF, Yamamoto PT (2017) Susceptibility of Ceraeochrysa cubana larvae and adults to six insect growth-regulator insecticides. Chemosphere 168:49–57CrossRefGoogle Scholar
  44. Pappas M, Broufas GD, Koveos DS (2011) Chrysopid predators and their role in biological control. J Entomol 8:301–326CrossRefGoogle Scholar
  45. Qi B, Gordon G, Gimme W (2001) Effects of neem-fed prey on the predacious insects Harmonia conformis (Boisduval) (Coleoptera: Coccinellidae) and Mallada signatus (Schneider) (Neuroptera: Chrysopidae). Biol Control 22:185–190CrossRefGoogle Scholar
  46. R development core team R (2010) R version 3.2.3. Viena. Available in: www.R-project.org
  47. Rezaei M, Talebi K, Naveh VH, Kavousi A (2007) Impacts of the pesticides imidacloprid, propargite, and pymetrozine on Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae): IOBC and life table assays. BioControl 52:385–398CrossRefGoogle Scholar
  48. Rugno GR, Zanardi OZ, Yamamoto PT (2015) Are the pupae and eggs of the lacewing Ceraeochrysa cubana (Neuroptera: Chrysopidae) tolerant to insecticides? J Econ Entomol 108:263–2015CrossRefGoogle Scholar
  49. Sabry KH, El-Sayed AA (2011) Biosafety of a biopesticide and some pesticides used on cotton crop against green lacewing, Chrysoperla carnea (Stehens) (Neuroptera: Chrysopidae). J Biopest 4:214–218Google Scholar
  50. Sabry AKH, Hassan KA, Rahman AAE (2014) Relative toxicity of some modern insecticides against the pink bollworm, Pectinophora gossypiella (Saunders) and their residues effects on some natural enemies. Int J Sci Environ Technol 3:481–491Google Scholar
  51. SAS Institute (2003) PROC user’s manual, version 9.1 ed. SAS Institute, Cary, NCGoogle Scholar
  52. Silva RA, Carvalho GA, Carvalho CF, Reis PR, Souza B, Pereira AMAR (2006) Ação de inseticidas fitossanitários em cafeeiros sobre pupas e adultos de Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae). Ciênc Rural 36:8–14CrossRefGoogle Scholar
  53. Stein CP, Parra JRP (1987) Uso da radiação ultra-violeta para inviabilizar ovos de Anagasta kuehniella (Zeller, 1879) visando estudos com Trichogramma spp. An Soc Entomol Bras 16:229–234Google Scholar
  54. Tauber CA, León T, Penny ND, Tauber MJ (2000a) The genus Ceraeochrysa (Neuroptera: Chrysopidae) of America north of Mexico: larvae, adults, and comparative biology. Ann Entomol Soc Am 93:1195–1221CrossRefGoogle Scholar
  55. Tauber MJ, Tauber CA, Daane KM, Hagen KS (2000b) Commercialization of predators: recent lessons from green lacewings (Neuroptera: Chrysopidae: Chrysoperla). Am Entomol 46:26–38CrossRefGoogle Scholar
  56. Teixeira DC, Danet JL, Eveillard S, Martins EC, Jesus Junior WC, Yamamoto PT, Lopes SA, Bassanezi RB, Ayres AJ, Saillard C, Bové JM (2005) Citrus huanglongbing in São Paulo state, Brazil: PCR detection of the “Candidatus” Liberibacter species associated with the disease. Mol Cell Probes 19:173–179CrossRefGoogle Scholar
  57. Ulhôa JLR, Carvalho GA, Carvalho CF, Souza B (2002) Ação de inseticidas recomendados para o controle do curuquerê-do-algodoeiro para pupas e adultos de Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae). Ciênc Agrotec Ed Esp:1365–1372Google Scholar
  58. Van de Veire M, Smagghe G, Degheele DA (1996) Laboratory test method to evaluate the effect of 31 pesticides on the predatory bug, Orius laevigatus (Heteroptera: Anthocoridae). Entomophaga 41:235–243CrossRefGoogle Scholar
  59. Vogt H, González M, Adán A, Smagghe G, Viñuela E (1998) Efectos secundarios de la azadiractina, vía contacto residual, en larvas jóvenes del depredador Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Bol San Veg Plagas 24:67–78Google Scholar
  60. Xiao D, Zhao J, Guo X, Chen H, Qu M, Zhai W, Desneux N, Biondi A, Zhang F, Wang S (2016) Sublethal effects of imidacloprid on the predatory seven-spot ladybird beetle Coccinella septempunctata. Ecotoxicology 25:1782–1793CrossRefGoogle Scholar
  61. Zehnder G, Gurr GM, Kühne S, Wade MR, Wratten SD, Wyss E (2007) Arthropod pest management in organic crops. Annu Rev Entomol 52:57–80CrossRefGoogle Scholar
  62. Zotti MJ, Grutzmacher AD, Lopes IH, Smagghe G (2013) Comparative effects of insecticides with different mechanisms of action on Chrysoperla externa (Neuroptera: Chrysopidae): lethal, sublethal and dose–response effects. Insect Sci 20:743–752CrossRefGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2018

Authors and Affiliations

  • G R Rugno
    • 1
    Email author
  • O Z Zanardi
    • 2
  • J R P Parra
    • 1
  • P T Yamamoto
    • 1
  1. 1.Dept of Entomology and AcarologyLuiz de Queiroz College of Agriculture/Univ of São Paulo (ESALQ/USP)PiracicabaBrasil
  2. 2.Fundo de Defesa da Citricultura (FUNDECITRUS)AraraquaraBrasil

Personalised recommendations