Advertisement

Neotropical Entomology

, Volume 48, Issue 1, pp 57–70 | Cite as

Potential Effects of Future Climate Changes on Brazilian Cool-Adapted Stoneflies (Insecta: Plecoptera)

  • D P SilvaEmail author
  • A C Dias
  • L S Lecci
  • J Simião-Ferreira
Ecology, Behavior and Bionomics
  • 93 Downloads

Abstract

The continuous pursuit of welfare and economic development through the exploitation of natural resources by human societies consequently resulted in the ongoing process of climate change. Changes in the distribution of species towards the planet’s poles and mountain tops are some of the expected to biological consequences of this process. Here, we assessed the potential effects of future climate change on four cool-adapted Gripopterygidae (Insecta: Plecoptera) species [Gripopteryx garbei Navás 1936, G. cancellata (Pictet 1841), Tupiperla gracilis (Burmeister 1839), and T. tessellata (Brauer 1866)] from Southeastern Brazilian Atlantic forest. As species adapted to cold conditions, in the future scenarios of climate change, we expected these organisms to shrink/change their distributions ranges towards areas with suitable climatic conditions in Southern Brazilian regions, when compared with their predicted distributions in present climatic conditions. We used seven principal components derived from 19 environmental variables from Worldclim database for the present scenario and also seven principal components obtained from 17 different Atmosphere-Ocean Global Circulation Models (AOGCMs), considering the most severe emission scenario for green-house gases to predict the species’ distributions. Depending on the climatic scenario considered, there were polewards distribution range changes of the species. Additionally, we also observed an important decrease in the amount of protected modeled range for the species in the future scenarios. Considering that this Brazilian region may become hotter in the future and have its precipitation regime changed, as observed in the severe 2013–2014 drought, we believe these species adapted to high altitudes will be severely threatened in the future.

Keywords

Climate change Gripopterygidae Atlantic forest species distribution models stonefly Plecoptera 

Notes

Acknowledgments

The authors are grateful to Dr. Claudio Froehlich for kindly providing us with several occurrence records that greatly improved the final manuscript we obtained. ACD received a scholarship from the extinct Brazilian science program Ciências sem Fronteiras (Science without Borders; process 202900/2011-8), as an exchange student in the research group Freshwater Ecology and Management (FEM), Departamiento de Ecologia, University of Barcelona (UB), Spain in 2012. ACD is also grateful for scholarships received from Programa Inst itucional de Iniciação Tecnológica e Inovação from Conselho Nacional de Desenvolvimento Científico e Tecnológico (PIBITI/CNPq) and Programa de Extensão from Ministério de Educação Cidadania (PROEXT/UEG) programs, which fostered his scientific formation in Biological Science during his graduation course. JSF is grateful to Universidade Estadual de Goiás for the grant she received from the Programa de Bolsas de Incentivo à Pesquisa (PROBIP) during the development of this manuscript. Finally, we also thank two anonymous reviewers, and the editor of the journal that greatly improved a previous version of this manuscript. Finally, the authors would like to thank Sara Lodi for reviewing the English grammar of a previous version of this manuscript.

References

  1. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232Google Scholar
  2. Almeida MC, Côrtes LG, De Marco JP (2010) New records and a niche model for the distribution of two Neotropical damselflies: Schistolobos boliviensis and Tuberculobasis inversa (Odonata: Coenagrionidae). Insect Conserv Divers 3:252–256Google Scholar
  3. Anderson RP (2017) When and how should biotic interactions be considered in models of species niches and distributions? J Biogeogr 44:8–17Google Scholar
  4. Anderson RP, Gonzalez IJ (2011) Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol Model 222:2796–2811Google Scholar
  5. Avelino-Capistrano F, Nessimian JL (2014) Novos registros da fauna de Plecoptera (Insecta) para o Estado do Espírito Santo, Brasil. Bol do Mus Biol Mello Leitão 33:5–18Google Scholar
  6. Bálint M, Domisch S, Engelhardt CHM, Haase P, Lehrian S, Sauer J, Theissinger K, Pauls SU, Nowak C (2011) Cryptic biodiversity loss linked to global climate change. Nat Clim Chang 1:313–318.  https://doi.org/10.1038/nclimate1191 Google Scholar
  7. Ballesteros-Mejia L, Kitching IJ, Jetz W, Nagel P, Beck J (2013) Mapping the biodiversity of tropical insects: species richness and inventory completeness of African sphingid moths. Glob Ecol Biogeogr 22:586–595Google Scholar
  8. Barry S, Elith J (2006) Error and uncertainty in habitat models. J Appl Ecol 43:413–423Google Scholar
  9. Bellard C, Bertelsmeier C, Leadley P, Thuiller W (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377Google Scholar
  10. Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Chang 15:365–377Google Scholar
  11. Bispo PC, Froehlich CG (2007) Stoneflies (Plecoptera) from northern Goiás state, central Brazil: new record of Kempnyia oliveirai (Perlidae) and a new species of Tupiperla (Gripopterygidae). Aquat Insects Int J Freshw Entomol 66:611–622Google Scholar
  12. Bispo PC, Lecci LS (2011) Gripopterygidae (Plecoptera) from Paranapiacaba mountains, southeastern Brazil. Ann Limnol 47:373–385Google Scholar
  13. Bispo PC, Oliveira LG, Bini LM, Souza KG (2006) Ephemeroptera, Plecoptera, and Trichoptera assemblages from riffles in mountain streams of Central Brazil: environmental factors influencing the distribution and abundance of immatures. Rev Bras Biol 66:175–189Google Scholar
  14. Blanc S, Aars J, Andersen M (2015) White-beaked dolphins trapped in the ice and eaten by polar bears. Polar Res 34:26612.  https://doi.org/10.3402/polar.v34.26612 Google Scholar
  15. Bonada N, Prat N, Resh VH, Statzner B (2006) Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 51:495–523Google Scholar
  16. Canestrelli D, Bisconti R, Chiocchio A, Maiorano L, Zampiglia M, Nascetti G (2017) Climate change promotes hybridisation between deeply divergent species. PeerJ 5:e3072.  https://doi.org/10.7717/peerj.3072 Google Scholar
  17. Cardoso P, Erwin TL, Borges PAV, New TR (2011) The seven impediments in invertebrate conservation and how to overcome them. Biol Conserv 144:2647–2655Google Scholar
  18. Cavallaro KOR (2011) Aspectos da ecologia e biologia de Plecoptera (Insecta) em riachos da Serra da Mantiqueira e da Serra do Mar, no Estado de São Paulo. Universidade de São Paulo, Ribeirão Preto, Brasil, p 175Google Scholar
  19. Chessman BC (2013) Do protected areas benefit freshwater species? A broad-scale assessment for fish in Australia’s Murray–Darling Basin. J Appl Ecol 50:969–976Google Scholar
  20. Coutinho RM, Kraenkel RA, Prado PI (2015) Catastrophic regime shift in water reservoirs and São Paulo water supply crisis. PLoS One 10:e0138278.  https://doi.org/10.1371/journal.pone.0138278 Google Scholar
  21. Diniz-Filho JAF, Bini LM, Rangel TFLVB, Loyola RD, Hof C, Nogués-Bravo D, Araújo MB (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906Google Scholar
  22. Diniz-Filho JAF, De Marco JP, Hawkins BA (2010) Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conserv Divers 3:172–179Google Scholar
  23. Dobrovolski R, Rattis L (2015) Water collapse in Brazil: the danger of relying on what you neglect. Natureza & Conservação 13 (2015) 80–83Google Scholar
  24. Domisch S, Amatulli G, Jetz W (2015) Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Sci Data 2:150073.  https://doi.org/10.1038/sdata.2015.73 Google Scholar
  25. Domisch S, Araújo MB, Bonada N, Pauls SU, Jähnig SC, Haase P (2013) Modelling distribution in European stream macroinvertebrates under future climates. Glob Chang Biol 19:752–762Google Scholar
  26. Durant JM, Hjermann DO, Ottersen G, Stenseth NC (2007) Climate and the match or mismatch between predator requirements and resource availability. Clim Res 33:271–283Google Scholar
  27. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wizs MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151Google Scholar
  28. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57Google Scholar
  29. Elsen PR, Tingley MW (2015) Global mountain topography and the fate of montane species under climate change. Nat Clim Chang 5:772–776Google Scholar
  30. Escobar H (2015) Drought triggers alarms in Brazil’s biggest metropolis. Science 347:812Google Scholar
  31. Ferro VG, Lemes P, Melo AS, Loyola R (2014) The reduced effectiveness of protected areas under climate change threatens Atlantic Forest tiger moths. PLoS One 9:e107792.  https://doi.org/10.1371/journal.pone.0107792 Google Scholar
  32. Forero-Medina G, Vieira M, Grelle CEV, Almeida PJ (2009) Body size and extinction risk in Brazilian carnivores. Biota Neotrop 9:45–50Google Scholar
  33. Frederico RG, De Marco P Jr, Zuanon J (2014) Evaluating the use of macroscale variables as proxies for local aquatic variables and to model stream fish distributions. Freshw Biol 59:2303–2314Google Scholar
  34. Froehlich CG (1999) Ordem Plecoptera. In: Ismael D, Valenti WC, Matsumura-Tundisi T, Rocha O (eds) Biodiversidade do Estado de São Paulo, Brasil: síntese do conhecimento ao final do século XX, vol. 4: invertebrados de água doce, 1st edn. FAPESP, São Paulo, pp 158–160Google Scholar
  35. Froehlich CG (1969) Some Gripopterygidae from the Biological Station at Paranapiacaba, state of São Paulo. Beiträge zur Neotropischen Fauna 6:17–39Google Scholar
  36. Froehlich CG (2011) Checklist dos Plecoptera (Insecta) do Estado de São Paulo, Brasil. Biota Neotrop 11:601–606Google Scholar
  37. Froehlich CG (2010) Catalogue of Neotropical Plecoptera. Illiesia 6:118–205Google Scholar
  38. Froehlich CG (2012) Plecoptera. In: Rafael JA, Melo GAR, Carvalho CJB et al (eds) Insetos do Brasil: Diversidade e Taxonomia, 1st edn. Holos, Ribeirão Preto, pp 257–261Google Scholar
  39. Giannini TC, Acosta AL, Garófalo CA, Saraiva AM, Alves-dos-Santos I, Imperatriz-Fonseca VL (2012) Pollination services at risk: bee habitats will decrease owing to climate change in Brazil. Ecol Model 244:127–131Google Scholar
  40. Godoy O, Bartomeus I, Rohr RP, Saavedra S (2018) Towards the integration of niche and network theories. Trends Ecol Evol 33:287–300Google Scholar
  41. Google Inc. (2018) Google earth, version 7.0.3.8542Google Scholar
  42. Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Stcliffe PR, Tulloch AITT, Regan TJ, Brotons L, Mcdonald-Madden E, Mantyka-Pringle C, Martin TG, Rhodes JR, Maggini R, Setterfield SA, Elith J, Schwartz MW, Wintle BA, Broennimann O, Austin M, Ferrier S, Kearney MP, Possingham HP, Bucley YM (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435Google Scholar
  43. Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785Google Scholar
  44. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978Google Scholar
  45. Hortal J, de Bello F, Diniz-Filho JAF, Lewinsohn TM, Lobo JM, Ladle RJ (2015) Seven shortfalls that beset large-scale knowledge of biodiversity. Annu Rev Ecol Evol Syst 46:523–549Google Scholar
  46. Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE, Álvarez-Pérez HJ, Garland T (2009) Why tropical forest lizards are vulnerable to climate warming. Proc R Soc B Biol Sci 276:1939–1948Google Scholar
  47. Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61Google Scholar
  48. Illies J (1965) Phylogeny and zoogeography of the Plecoptera. Annu Rev Entomol 10:117–141Google Scholar
  49. IPCC (2013) Climate change 2013: the physical science basis. Working group I. Contribution to the IPCC 5th assessment report. http://www.ipcc.ch and the IPCC WGI AR5 website http://www.climatechange2013.org
  50. Isaak DJ, Young MK, Luce CH, Hostetler SW, Wenger SJ, Peterson EE, Ver JM, Groce MC, Horan DL, Nagel DE (2016) Slow climate velocities of mountain streams portend their role as refugia for cold-water biodiversity. Proc Natl Acad Sci USA 113(16):e4374–e4379.  https://doi.org/10.1073/pnas.1522429113 Google Scholar
  51. Jacobsen D, Rostgaard S, Vásconez JJ (2003) Are macroinvertebrates in high altitude streams affected by oxygen deficiency? Freshw Biol 48:2025–2032Google Scholar
  52. Janzen DH (1967) Why mountain passes are higher in the tropics. Am Nat 101:233–249.  https://doi.org/10.1086/282487 Google Scholar
  53. Jiménez-Valverde A, Peterson AT, Soberón J, Overton JM, Aragon P, Lobo JM (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13:2785–2797Google Scholar
  54. Kapos V, Rhind J, Edwards M, Price MF, Ravilious C (2000) Developing a map of the world’s mountain forests. In: Price MF, Butt N (eds) Forest in sustainable mountain development: a state-of-knowledge report for 2000, 1st edn. CAB International, Wallinford, pp 4–12Google Scholar
  55. Kramer-Schadt S, Niedballa J, Pilgrim JD, Schröder B, Lindenborn J, Reinfelder V, Stillfried M, Heckmann I, Scharf AK, Augeri DM, Cheyne SM, Hearn AJ, Ross J, Macdonald DW, Mathai J, Eaton J, Marshall AJ, Semiadi G, Rustam R, Bernard H, Alfred R, Samejima H, Duckworth JW, Breitenmoser-Wuersten C, Belant JL, Hofer H, Wilting A (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19:1366–1379Google Scholar
  56. Lawler JL, Shafer SL, White D, Kareiva P, Maurer EP, Blaustein AR, Bartlein PJ (2009) Projected climate-induced faunal change in the western hemisphere. Ecology 90:588–597Google Scholar
  57. Lecci LS (2009) Sistemática de Gripopteryx (Pictet 1841) (Plecoptera: Gripopterygidae). Universidade de São Paulo, Ribeirão Preto, Brasil, p 68Google Scholar
  58. Lecci LS, Duarte T, Calor AR (2014) Plecoptera do Semiárido: Conhecimento atual e desafios. In: Bravo F, Calor AR (eds) Artrópodes do Semiárido: Biodiversidade e Conservação, 1st edn. Printmídia, Feira de Santana, pp 91–98Google Scholar
  59. Lecci LS, Froehlich CG (2011) Taxonomic revision of Gripopteryx (Pictet, 1841) (Plecoptera: Gripopterygidae). Zootaxa 2792:1–21Google Scholar
  60. Lemes P, Loyola RD (2013) Accommodating species climate-forced dispersal and uncertainties in spatial conservation planning. PLoS One 8:e54323Google Scholar
  61. Lobo JM (2016) The use of occurrence data to predict the effects of climate change on insects. Curr Opin Insect Sci 17:62–68Google Scholar
  62. Loyola RD, Bini LM (2015) Water shortage: a glimpse into the future. Nat Conserv 13:1–2.  https://doi.org/10.1016/j.ncon.2015.05.004 Google Scholar
  63. McGuire JL, Lawler JJ, McRae BH, Nuñez T, Theobald DM (2016) Achieving climate connectivity in a fragmented landscape. Proc Natl Acad Sci U S A.  https://doi.org/10.1073/pnas.1602817113
  64. MEA (2005) Millenium ecosystem assessment. In: Ecosystems and human well-being: scenarios. Island Press, Washington, DCGoogle Scholar
  65. Meier ES, Kienast F, Pearman PB et al (2010) Biotic and abiotic variables show little redundancy in explaining tree species distributions. Ecography 33:1038–1048Google Scholar
  66. Miller-Struttmann NE, Geib JC, Franklin JD, Kevan PG, Holdo RM, Ebert-May D, Lynn AM, Kettenbach JA, Hedrick E, Galen C (2015) Functional mismatch in a bumble bee pollination mutualism under climate change. Science 349:1541–1544Google Scholar
  67. Morueta-Holme N, Engemann K, Sandoval-Acuña P, Jonas JD, Segnitz RM, Svenning JC (2015) Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc Natl Acad Sci U S A 112:12741–12745Google Scholar
  68. Morueta-Holme N, Enquist BJ, McGill BJ, Boyle B, Jørgensen PM, Ott JE, Peet RK, Símová I, Sloat LL, Thiers B, Violle C, Wiser SK, Dollins S, Donoghue JC II, Kraft NJB, Regetz J, Schildhauer M, Spencer N, Svenning JC (2013) Habitat area and climate stability determine geographical variation in plant species range sizes. Ecol Lett 16:1446–1454Google Scholar
  69. Nazareno AG, Laurance WF (2015) Brazil’s beware deforestation. Science 347:1427Google Scholar
  70. Nessimian JL, Avelion-Capistrano F, Correia BL, Costa JM (2009) Espécies de Plecoptera (Insecta) registradas no estado do Rio de Janeiro, Brasil. Arq do Mus Naional 67:313–319Google Scholar
  71. Newbold T (2010) Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Prog Phys Geogr 34:3–22Google Scholar
  72. Nóbrega CC, De Marco P Jr (2011) Unprotecting the rare species: a niche-based gap analysis for odonates in a core Cerrado area. Divers Distrib 17:491–505Google Scholar
  73. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669Google Scholar
  74. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42Google Scholar
  75. Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117Google Scholar
  76. Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen IC, Clark TD, Colwell RK, Danielsen F, Evengård B, Falconi L, Ferrier S, Frusher S, Garcia RA, Griffis RB, Hobday AJ, Janion-Scheepers C, Jarzyna MA, Jennings S, Lenoir J, Linnetved HI, Martin VY, McCormack PC, McDonald J, Mitchell NJ, Mustonen T, Pandolfi JM, Pettorelli N, Popova E, Robinson SA, Scheffers BR, Shaw JD, Sorte CJB, Strugnell JM, Sunday JM, Tuanmu MN, Vergés A, Villanueva C, Wernberg T, Wapstra E, Williams SE (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355:eaai9214.  https://doi.org/10.1126/science.aai9214 Google Scholar
  77. Pellissier L, Bråthen KA, Pottier J, Randin CF, Vittoz P, Dubuis A, Yoccoz NG, Alm T, Zimmermann NE, Guisan A (2010) Species distribution models reveal apparent competitive and facilitative effects of a dominant species on the distribution of tundra plants. Ecography 33:1004–1014Google Scholar
  78. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259Google Scholar
  79. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175Google Scholar
  80. Pimm SL (2008) Biodiversity: climate change or habitat loss – which will kill more species. Curr Biol 18:117–119Google Scholar
  81. Pyke GH, Ehrlich PR (2010) Biological collections and ecological/environmental research: a review, some observations and a look to the future. Biol Rev 85:247–266Google Scholar
  82. Radosavljevic A, Anderson RP (2014) Making better Maxent models of species distributions: complexity, overfitting and evaluation. J Biogeogr 41:629–643Google Scholar
  83. Rangel TF, Loyola RD (2012) Labeling ecological niche models. Nat Conserv 10:119–126Google Scholar
  84. Raxworthy CJ, Pearson RG, Rabibisoa N, Rakotondrazafy AM, Ramanamanjato JB, Raselimanana AP, Wu S, Nussbaum RA, Stone DA (2008) Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar. Glob Chang Biol 14:1703–1720.  https://doi.org/10.1111/j.1365-2486.2008.01596.x Google Scholar
  85. Reddy S, Dávalos LM (2003) Geographical sampling bias and its implications for conservation priorities in Africa. J Biogeogr 30:1719–1727Google Scholar
  86. Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5-a scenario of comparatively high greenhouse gas emissions. Clim Chang 109:33–57.  https://doi.org/10.1007/s10584-011-0149-y Google Scholar
  87. Ribeiro M, Metzger J, Martensen A, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest disturbed? Implications for conservation. Biol Conserv 142:1141–1153Google Scholar
  88. Rocchini D, Hortal J, Lengyel S, Lobo JM, Jiménez-Valverde A, Ricotta C, Bacaro G, Chiarucci A (2011) Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Prog Phys Geogr 35:211–226Google Scholar
  89. Rodell M, Famiglietti JS, Wiese DN, Reager JT, Beaudoing HK, Landerer FW, Lo M-H (2018) Emerging trends in global freshwater availability. Nature. doi: https://doi.org/10.1038/s41586-018-0123-1
  90. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Poubds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60Google Scholar
  91. Roque FO, Lecci LS, Siqueira T, Froehlich CG (2008) Using environmental and spatial filters to explain stonefly occurrences in southeastern Brazilian streams: implications for biomonitoring. Acta Limnol Bras 20:117–130Google Scholar
  92. Sáenz-Romero C, Rehfeldt GE, Crookston NL, Duval P, St-Amant R, Beaulieu J, Richardson BA (2010) Spline models of contemporany, 2030, 2060 and 2090 climates for Mexico and their use understanding climate-change impacts on the vegetation. Clim Chang 102:595–623Google Scholar
  93. Sastre P, Lobo JM (2009) Taxonomist survey biases and the unveiling of biodiversity patterns. Biol Conserv 142:462–467Google Scholar
  94. Silva DP, Aguiar AG, Simião-Ferreira J (2016) Assessing the distribution and conservation status of a long-horned beetle with species distribution models. J Insect Conserv 20:611–620.  https://doi.org/10.1007/s10841-016-9892-8 Google Scholar
  95. Silva DP, Aguiar AJC, Melo GAR, Anjos-Silva EJ, De Marco P Jr (2013) Amazonian species within the Cerrado savanna: new records and potential distribution for Aglae caerulea (Apidae: Euglossini). Apidologie 44:673–683Google Scholar
  96. Silva DP, Gonzalez VH, Melo GAR, Lucia M, Alvarez LJ, De Marco P Jr (2014) Seeking the flowers for the bees: integrating biotic interactions into niche models to assess the distribution of the exotic bee species Lithurgus huberi in South America. Ecol Model 273:200–209Google Scholar
  97. Silva DP, Macêdo ACBA, Ascher JS, De Marco P Jr (2015) Range increase of a Neotropical orchid bee under future scenarios of climate change. J Insect Conserv 19:901–910.  https://doi.org/10.1007/s10841-015-9807-0 Google Scholar
  98. Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123Google Scholar
  99. Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Informatics 2:1–10Google Scholar
  100. Soto-Corrêa JC, Sáenz-Romero C, Lindig-Cisneros R, de la Berrera E (2013) The neotropical shrub Lupinus elegans, from temperate forests, may not adapt to climate change. Plant Biol 15:607–610Google Scholar
  101. Suriano MT, Fonseca-Gessner AA, Roque FO, Froehlich CG (2011) Choice of macroinvertebrate metrics to evaluate stream conditions in Atlantic Forest, Brazil. Environ Monit Assess 175:87–101Google Scholar
  102. Tambosi LR, Martensen AC, Ribeiro MC, Metzger JP (2014) A framework to optimize biodiversity restoration efforts based on habitat amount and landscape connectivity. Restor Ecol 22:169–117.  https://doi.org/10.1111/rec.12049 Google Scholar
  103. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498Google Scholar
  104. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, De Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148Google Scholar
  105. Tierno de Figueroa JM, López-Rodríguez MJ, Lorez A, Graf W, Schimidt-Kloiber A, Hering D, Lorenz A, Graf W, Schmidt-Kloiber A, Hering D (2010) Vulnerable taxa of European Plecoptera (Insecta) in the context of climate change. Biodivers Conserv 19:1269–1277.  https://doi.org/10.1007/s10531-009-9753-9 Google Scholar
  106. Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363Google Scholar
  107. Vasconcelos TS, Antonelli CP, Napoli MF (2017) Mutualism influences species distribution predictions for a bromeliad-breeding anuran under climate change. Austral Ecol 42:869–877.  https://doi.org/10.1111/aec.12509 Google Scholar
  108. Whittaker RJ, Araújo MB, Jepson P, Ladle RJ, Watson JEM, Willis KJ (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23Google Scholar
  109. Zwick P (2000) Phylogenetic system and zoogeography of the Plecoptera. Annu Rev Entomol 45:709–746Google Scholar

Copyright information

© Sociedade Entomológica do Brasil 2018

Authors and Affiliations

  1. 1.Depto de Ciências BiológicasInstituto Federal GoianoUrutaíBrasil
  2. 2.Campus de Ciências Exatas e TecnológicasUniv Estadual de GoiásAnápolisBrasil
  3. 3.Depto de Biologia – DBioUniv Federal de Mato Grosso – UFMTRondonópolisBrasil

Personalised recommendations