Shredder Chironomid Diets Are Influenced by Decomposition Rates of Different Leaf Litter Species

  • L A Leite-Rossi
  • H H L Saulino
  • E M Shimabukuro
  • M B Cunha-Santino
  • S Trivinho-Strixino
Ecology, Behavior and Bionomics
  • 40 Downloads

Abstract

The diet of shredder chironomid larvae depends on the local and temporal conditions of the food resources. We analysed the gut content of shredder chironomid larvae that colonised the leaf litter of three riparian species: Hedychium coronarium, Pteridium arachnoideum and Magnolia ovata. We hypothesised that the differences in the decomposition rates of leaf litter species influence the consumption of plant tissue by shredder chironomid taxa over time. We incubated perforated bottles with each leaf species within four low-order streams during 1st, 3rd, 7th, 22nd, 36th, 55th and 85th day of exposure. We used an analysis of covariance (ANCOVA) to compare differences in the percentage of AFDM (ash-free dry mass) and AOM (amorphous organic matter) among leaf litter species. To verify differences in the larvae abundance, we used a general linear model, and to test if there were feeding preferences for AFDM and AOM, we used the adapted Paloheimo selectivity index. Magnolia ovata presented a higher quantity of AOM followed by H. coronarium and P. arachnoideum. Pteridium arachnoideum showed a higher AFDM followed by H. coronarium and M. ovata. The larvae abundance was different among plant species and varied significantly with AFDM and AOM quantities. The consumption of plant tissue by shredder chironomid differed temporarily and among riparian species, where facultative or strict shredders showed strong association with different leaf litter species. The amount of AFDM and AOM in plant tissues explained these differences. We highlighted that shredder chironomids displayed an important role as co-participants in the decomposition process.

Keywords

Colonisation decomposition Endotribelos leaf litter Stenochironomus 

Supplementary material

13744_2018_608_MOESM1_ESM.docx (37 kb)
ESM 1 (DOCX 37 kb)

References

  1. Allan JD, Castillo MM (2007) Stream ecology: structure and function of running waters. Springer, Dordrecht, pp 197–227CrossRefGoogle Scholar
  2. Alonso-Amelot ME, Oliveros A, Calcagno MP, Arellano E (2001) Bracken adaptation mechanisms and xenobiotic chemistry. Pure Appl Chem 73:549–553CrossRefGoogle Scholar
  3. ASTM D2974-87-14 (2014) Standard test methods for moisture, ash, and organic matter of peat and other organic soils. American Society for Testing & Materials, West ConshohockenGoogle Scholar
  4. Backer TT III, Lockaby BG, Conner WH, Meier CE, Stanturf JA, Burke MK (2001) Leaf litter decomposition and nutrient dynamics in four southern forested floodplain communities. Soil Sci Soc Am J 65:1334–1347CrossRefGoogle Scholar
  5. Bärlocher F (1997) Pitfalls of traditional techniques when studying decomposition of vascular plant remains in aquatic habitats. Limnetica 13:1–11Google Scholar
  6. Berg HB (1995) Larval food and feeding behaviour. In: Armitage PD, Cranston PS, Pinder LCV (eds) The Chironomidae: biology and ecology of non-biting midges. Chapman & Hall, London, pp 1–584Google Scholar
  7. Bianchini JI (2003) Modelos de crescimento e decomposição de macrófitas aquáticas. In: Thomaz SM, Bini LM (eds) Ecologia e Manejo de Macrófitas Aquáticas. EDUEM, Maringá, pp 85–126Google Scholar
  8. Biasi C, Tonin AM, Restello RM, Hepp LU (2013) The colonization of leaf litter by Chironomidae (Diptera): the influence of chemical quality and exposure duration in a subtropical stream. Limnologica 43:427–433CrossRefGoogle Scholar
  9. Borkent A (1984) The systematics and phylogeny of the Stenochironomus complex (Xestochironomus, Harrisius and Stenochironomus) (Diptera: Chironomidae). Mem Ent Soc Can 128:1–269Google Scholar
  10. Buttakka CMM, Grybkowska M, Pinha GD, Takeda AM (2014) Habitat and trophic relatshionship of Chironomidae insect larvae from the Sepotuba River Basin, Pantanal of Mato Grosso, Brazil. Braz J Biol 74:395–407CrossRefGoogle Scholar
  11. Callisto M, Gonçalves JF Jr, Graça MAS (2007) Leaf litter as a possible food source for chironomids (Diptera) in Brazilian and Portuguese headwater streams. Rev Bras Zool 24:442–448CrossRefGoogle Scholar
  12. Cheshire KIM, Boyero LUZ, Pearson RG (2005) Food webs in tropical Australian streams: shredders are not scarce. Freshw Biol 50:748–769CrossRefGoogle Scholar
  13. Choong MF, Lucas PW, Ong JSY, Pereira B, Tan HTW, Turner IM (1992) Leaf fracture toughness and sclerophylly: their correlations and ecological implications. New Phytol 121:597–610CrossRefGoogle Scholar
  14. Cuffney TF, Wallace JB, Lugthart J (1990) Experimental evidence quantifying the role of benthic invertebrates in organic matter dynamics of headwater streams. Freshw Biol 23:281–299CrossRefGoogle Scholar
  15. Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Annu Rev Ecol Evol 10:147–172CrossRefGoogle Scholar
  16. Cummins KW, Merritt RW, Andrade PCN (2005) The use of invertebrate functional groups to characterize ecosystem attributes in select streams and rivers in south Brazil. Stud Neotrop Fauna Environ 40:68–89CrossRefGoogle Scholar
  17. Debusk WF, Reddy KR (2005) Litter decomposition and nutrient dynamics in a phosphorus enriched everglades marsh. Biogeochemistry 75:217–240CrossRefGoogle Scholar
  18. Galizzi MC, Marchese M (2007) Descomposición de hojas de Tessaria integrifolia (Asteracea) y colonización por invertebrados em um cauce secundário del río Paraná médio. Interciencia 32:535–540Google Scholar
  19. Galizzi MC, Zilli F, Marchese M (2012) Diet and functional feeding groups of Chironomidae (Diptera) in the Middle Paraná River floodplain (Argentina). Iheringia Ser Zool 102:117–121CrossRefGoogle Scholar
  20. Gonçalves JF Jr, Esteves FA, Callisto M (2003) Chironomids colonization on Nymphaea ampla L. detritus during a degradative ecological succession experiment in a Brazilian coastal lagoon. Act Limnol Bras 15:21–27Google Scholar
  21. Gonçalves JF, Graça MAS, Callisto M (2006) Litter breakdown dynamics at three streams in temperate, mediterranean and tropical Cerrado climates. J N Am Benthol Soc 25:344–355CrossRefGoogle Scholar
  22. Gonçalves JF, Graça MAS, Callisto M (2007) Litter decomposition in a Cerrado savannah stream is retarded by leaf toughness, low dissolved nutrients and a low density of shredders. Freshw Biol 52:1440–1451CrossRefGoogle Scholar
  23. Gonçalves JF, Rezende RS, França J, Callisto M (2012) Invertebrate colonization during leaf processing of native, exotic and artificial detritus in a tropical stream. Mar Freshw Res 63:428–439CrossRefGoogle Scholar
  24. Goya JF, Frangi JL, Perez C, Tea FD (2008) Decomposition and nutrient release from leaf litter in Eucalyptus grandis plantations on three different soils in Entre Ríos, Argentina. Bosque 29:217–226Google Scholar
  25. Graça MAS (2001) The role of invertebrates on leaf litter decomposition in streams—a review. Int Rev Hydrobiol 86:383–393CrossRefGoogle Scholar
  26. Graça MA, Ferreira V, Canhoto C, Encalada AC, Guerrero-Bolãno F, Wantzen KM, Boyero L (2015) A conceptual model of litter breakdown in low order streams. Int Rev Hydrobiol 100:1–12CrossRefGoogle Scholar
  27. Hepp LU, Biasi C, Milesi SV, Veiga FO, Restello RM (2008) Chironomidae (Diptera) larvae associated to Eucalyptus globulus and Eugenia uniflora leaf litter in a subtropical stream (Rio Grande do Sul, Brazil). Act Limnol Bras 20:345–350Google Scholar
  28. Hoffmann A (2005) Dynamics of fine particulate organic matter (FPOM) and macroinvertebrates in natural and artificial leaf packs. Hydrobiologia 549:167–178CrossRefGoogle Scholar
  29. Howard JJ (1988) Leafcutting ant diet selection: relative influence of leaf chemistry and physical features. Ecology 69:250–260CrossRefGoogle Scholar
  30. Jackson JK, Sweeney BW (1995) Egg and larval development times for 35 species of tropical stream insects from Costa Rica. J N Am Benthol Soc 14:115–130CrossRefGoogle Scholar
  31. Janke H, Trivinho-Strixino S (2007) Colonization of leaf litter by aquatic macroinvertebrates: a study in a low order tropical stream. Act Limnol Brasil 19:109–115Google Scholar
  32. Johnson PN (2001) Vegetation recovery after fire on a southern New Zealand peatland. New Zeal J Bot 39:251–267CrossRefGoogle Scholar
  33. Kissmann KG, Groth D (1991) Plantas infestantes e nocivas. Basf Brasileira, São Paulo, pp 590–593Google Scholar
  34. Koroiva R, Souza CWO, Toyama D, Henrique-Silva F, Fonseca-Gessner AA (2013) Lignocellulolytic enzymes and bacteria associated with the digestive tracts of Stenochironomus (Diptera: Chironomidae) larvae. Genet Mol Res 12:3421–3434CrossRefPubMedGoogle Scholar
  35. Leite-Rossi LA, Trivinho-Strixino S (2012) Are sugar cane leaf-detritus well colonized by aquatic macroinvertebrates? Act Limnol Brasil 24:303–313CrossRefGoogle Scholar
  36. Leite-Rossi LA, Saito VS, Cunha-Santino MB, Trivinho-Strixino S (2016) How does leaf litter chemistry influence its decomposition and colonization by shredder Chironomidae (Diptera) larvae in a tropical stream? Hydrobiologia 77:119–130CrossRefGoogle Scholar
  37. Ligeiro R, Moretti MS, Gonçalves Jr JF, Callisto M (2010) What is more important for invertebrate colonization in a stream with low-quality inputs: exposure time or leaf species? Hydrobiologia 654:125–136CrossRefGoogle Scholar
  38. Lorenzi H (2002) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Instituto Plantarum, Nova Odessa, pp 1–368Google Scholar
  39. Lorenzi H, Souza H (2001) Plantas ornamentais. Instituto Plantarum, São Paulo, pp 1–791Google Scholar
  40. Lowman MD, Box JD (1983) Variation in leaf toughness and phenolic content among five species of Australian rain forest trees. Austral Ecol 8:17–25CrossRefGoogle Scholar
  41. Marrs RH, Johnson SW, Le-Duc MG (1998) Control of bracken and restoration of heathland VI. The response of bracken fronds to 18 years of continued bracken control or 6 years of control followed by recovery. J Appl Ecol 35:479–490CrossRefGoogle Scholar
  42. Marrs RH, Le-Duc MG, Mitchell RJ, Goddard D, Paterson S, Pakeman RJ (2000) The ecology of bracken: its role in succession and implications for control. Ann Bot 85:3–15CrossRefGoogle Scholar
  43. Mathuriau C, Chauvet E (2002) Breakdown of leaf litter in a neotropical stream. J N Am Benthol Soc 21:384–396CrossRefGoogle Scholar
  44. Nessimian JL, Sanseverino A (1998) Trophic functional characterization of chironomidae larvae (Diptera: Chironomidae) in a first order stream at the montain region of Rio de Janeiro state, Brazil. Verh Internat Verein Limnol 26:2115–2119Google Scholar
  45. Page CN (1976) The taxonomy and phytogeography of bracken. Bot J Linn Soc 73:1–34CrossRefGoogle Scholar
  46. Paloheimo JE (1979) Indices of food type prefer ence by a predator. J Fish Res Board Can 36:470–473CrossRefGoogle Scholar
  47. Petersen Jr RC (1992) The RCE: a riparian, channel, and environmental inventory for small streams in the agricultural landscape. Freshw Biol 27:292–306CrossRefGoogle Scholar
  48. Pio Corrêa M, Pena LA (1984) Dicionário das plantas úteis do Brasil e das exóticas cultivadas. Instituto Brasileiro de Desenvolvimento Florestal, Rio de Janeiro, pp, pp 1874–1934Google Scholar
  49. Portela RCQ, Matos DMS, Siqueira LP, Braz MIG, Silva-Lima L, Marrs RH (2009) Variation in aboveground biomass and necromass of two invasive species in the Atlantic rainforest, Southeast Brazil. Act Bot Brasil 23:571–577CrossRefGoogle Scholar
  50. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1993) Numerical recipes in C: the art of scientific computing. Cambridge University Press, New YorkGoogle Scholar
  51. Ramseyer U, Marchese M (2009) Leaf litter of Erythrina crista-galli L. (ceibo): trophic and substratum resources for benthic invertebrates in a secondary channel of the Middle Paraná River. Limnetica 28:1–10Google Scholar
  52. Reuss NS, Ladislav H, Gaute V, Michelsen A, Pedersen O, Brodersen KP (2014) Microhabitat influence on chironomid community structure and stable isotope signatures in West Greenland lakes. Hydrobiologia 730:59–77CrossRefGoogle Scholar
  53. Saito VS, Fonseca-Gessner AA (2014) Taxonomic compositions and feeding habits of Chironomidae in Cerrado streams (Southeast Brazil): impacts of land use changes. Act Limnol Brasil 26:35–46CrossRefGoogle Scholar
  54. Sanseverino AM, Nessimian JL (2008) Larvas de Chironomidae (Diptera) em depósitos de folhiço submerso em um riacho de primeira ordem da Mata Atlântica (Rio de Janeiro, Brasil). Rev Bras Entomol 52:95–104CrossRefGoogle Scholar
  55. Shieh SH, Hsu CB, Wang CP, Yang PS (2007) Leaf breakdown in a subtropical stream riffle and its association with macroinvertebrates. Zool Stud 46:609–621Google Scholar
  56. Silva USR, Silva-Matos DM (2006) The invasion of Pteridium aquilinum and the impoverishment of the seed bank in fire prone areas of Brazilian Atlantic Forest. Biodivers Conserv 15:3035–3043CrossRefGoogle Scholar
  57. Silva-Matos DM, Xavier RO, Tiberio FCS, Marrs RH (2012) A comparative study of resource allocation in Pteridium in different Brazilian ecosystems and its relationship with European studies. Braz J Biol 74:156–165CrossRefGoogle Scholar
  58. Silva-Matos DM, Belinato TA (2010) Interference of Pteridium arachnoideum (Kaulf.) Maxon. (Dennstaedtiaceae) on the establishment of rainforest trees. Braz J Biol 70:311–316CrossRefPubMedGoogle Scholar
  59. Silveira LS, Rosa BF, Gonçalves EA, Alves RG (2015) Influence of pools and riffles on Chironomidae diversity in headwater streams of the Atlantic Forest. Neotrop Entomol 44:423–429CrossRefPubMedGoogle Scholar
  60. Siqueira T, Trivinho-Strixino S (2005) Diversidade de Chironomidae (Diptera) em dois córregos de baixa ordem na região central do Estado de São Paulo, através da coleta de exúvias de pupa. Rev Bras Entomol 49:531–534CrossRefGoogle Scholar
  61. Strixino G, Trivinho-Strixino S (2006) Herpobentos e haptobentos de lagoas marginais da estação ecológica de Jataí (Luiz Antônio, SP). In: Santos JE, Pires JSR, Moschini LE (eds) Estudos Integrados em Ecossistema Estação Ecológica de Jataí. EDUFSCar, São Carlos, SP, pp 20–44Google Scholar
  62. Tomanova S, Goitia E, Helesic J (2006) Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia 556:251–264CrossRefGoogle Scholar
  63. Trivinho-Strixino S, Strixino G (1998) Chironomidae (Diptera) associados a troncos de árvores submersos. Rev Bras Entomol 41:173–178Google Scholar
  64. Trivinho-Strixino S (2014) Ordem Diptera. Família Chironomidae. Guia de identificação de larvas. In: Hamada N, Nessimian JL, Querino RB (eds) Insetos Aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. Editora do INPA, Manaus, pp 457–660Google Scholar
  65. Tundisi JG, Matsumara-Tundisi T, Pareschi DC, Luzia AP, Von Haeling PH, Frollini EH (2008) The Tietê/Jacaré watershed: a case study in research and management. Estu Avanc 22:159–172CrossRefGoogle Scholar
  66. Valdemarsen T, Quintana CO, Kristensen E, Flindt MR (2014) Recovery of organic-enriched sediments through microbial degradation: implications for eutrophic estuaries. Mar Ecol Progr Ser 503:41–58CrossRefGoogle Scholar
  67. Valente-Neto F, Koroiva R, Fonseca-Gessner AA, Roque FO (2015) The effect of riparian deforestation on macroinvertebrates associated with submerged woody debris. Aquat Ecol 49:115–125CrossRefGoogle Scholar
  68. Vanotte RL, Minshall GW, Cummins KW, Sedell JR, Cushing CF (1980) The river continuum concept. Can J Fish Aquatic Sci 37:817–822CrossRefGoogle Scholar
  69. Wantzen KM, Wagner R (2006) Detritus processing by invertebrate shredders: a neotropical-temperate comparison. J N Am Benthol Soc 25:216–232CrossRefGoogle Scholar
  70. Watt AS (1940) Contributions to the ecology of bracken (Pteridium aquilinum) I. The rhizome. New Phytol 39:401–422CrossRefGoogle Scholar
  71. Wetzel RG, Likens GE (1991) Limnological analyses. Springer-Verlag, NewYork, pp 1–391CrossRefGoogle Scholar
  72. Wood KA, O’Hare MT, McDonald C, Searle KR, Daunt F, Stillman RA (2017) Herbivore regulation of plant abundance in aquatic ecossistem. Biol Rev 92:1128–1141CrossRefPubMedGoogle Scholar
  73. Woodward G, Hildrew AG (2002) Body-size determinants of niche overlap and intraguild predation within a complex food web. J Anim Ecol 71:1063–1074CrossRefGoogle Scholar
  74. Wright EL, Black CR, Cheesman AW, Turner BL, Sjögersten S (2013) Impact of simulated changes in water table depth on ex situ decomposition of leaf litter from a neotropical peatland. Wetlands 33:217–226CrossRefGoogle Scholar
  75. Yule CM, Leong MY, Liew KC, Ratnarajah L, Schimidt K, Wong HM, Pearson RG, Boyero L (2009) Shredders in Malaysia: abundance and richness are higher in cool upland tropical streams. J N Am Benthol Soc 28:404–415CrossRefGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2018

Authors and Affiliations

  1. 1.Programa de Pós Graduação em Ecologia e Recursos Naturais (PPG-ERN), Campus de São CarlosUniv Federal de São CarlosSão CarlosBrasil
  2. 2.Depto de Hidrobiologia, Campus de São CarlosUniv Federal de São CarlosSão CarlosBrasil

Personalised recommendations