Advertisement

Neotropical Entomology

, Volume 47, Issue 6, pp 821–827 | Cite as

Daily Activity Patterns and Thermal Tolerance of Three Sympatric Dung Beetle Species (Scarabaeidae: Scarabaeinae: Eucraniini) from the Monte Desert, Argentina

  • V C Giménez GómezEmail author
  • S B Lomáscolo
  • G A Zurita
  • F Ocampo
Ecology, Behavior and Bionomics
  • 121 Downloads

Abstract

Tolerance to extreme temperatures, thermal limits, and the mechanisms of thermoregulation are related to internal functions of insects and partly define their ecological niche. We study the association between daily activity of dung beetles from the Monte Desert in Argentina and their tolerance to high temperatures. Results indicate that for all three sympatric species studied, Eucranium belenae Ocampo, Anomiopsoides cavifrons (Burmeister), and Anomiopsoides fedemariai Ocampo, daily activity is associated to ground temperature. Eucranium belenae is active when ground temperature is relatively low and it is less tolerant to long periods of activity at high temperatures in the lab, while A. cavifrons and A. fedemariai are active when ground temperatures are higher, and they tolerate high temperatures for longer periods of time than E. belenae in the lab. These species coexist and use similar food sources, and this eco-physiological study may help to explain how they differentiate under the same environmental conditions. The Monte Desert is considered an extreme environment, and studies on thermal tolerance offer testable predictions to understand how species would respond to climate change.

Keywords

Eucranium belenae Anomiopsoides cavifrons Anomiopsoides fedemariai behavior arid environments insect physiology 

Notes

Acknowledgments

The authors want to thank members of the Entomology Department of Instituto Argentino de Investigaciones de Zonas Áridas, especially to Dr. Sergio Roig, Dr. Belén Maldonado, Dr. Jhon César Neita Moreno, Technician Ana Scollo, Dr. Federico Agrain, Dr. Germán San Blas, and Dra. Adriana Malvaldi, for their collaboration either in the field or in the lab. We thank field technicians Gualberto Zalazar and Hugo Debandi for help during fieldwork. We also thank Dra. Valeria Corbalán for lending us the necessary material for experiments and Dr. Rodrigo Pol for facilitating transport to field sites. Special thanks go to Domingo Giménez for his help with fieldwork and to Dra. Kimberly Sheldon for advice on experimental design and for comments on early versions of our article.

References

  1. Acebes P, Traba J, Malo JE (2012) Co-occurrence and potential for competition between wild and domestic large herbivores in a South American desert. J Arid Environ 77:39–44.  https://doi.org/10.1016/j.jaridenv.2011.09.003 CrossRefGoogle Scholar
  2. Bartholomew GA, Casey TM (1977) Endothermy during terrestrial activity in large beetles. Science 195(4281):882–883.  https://doi.org/10.1126/science.841312 CrossRefPubMedGoogle Scholar
  3. Bartholomew GA, Heinrich B (1978) Endothermy in African dung beetles during flight, ball making, and ball rolling. J Exp Biol 73:65–83Google Scholar
  4. Brook BW, Sodhi NS, Bradshaw CJA (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23(8):453–460.  https://doi.org/10.1016/j.tree.2008.03.011 CrossRefPubMedGoogle Scholar
  5. Caveney S, Scholtz CH, McIntyre P (1995) Patterns of daily flight activity in onitine dung beetles (Scarabaeinae: Onitini). Oecologia 103(4):444–452.  https://doi.org/10.1007/BF00328682 CrossRefPubMedGoogle Scholar
  6. Charle E (1927) The animal community. In: Charle E, Leibold MA, Wootton JT (eds) Animal ecology. The Macmillan company, New York, pp 1–15Google Scholar
  7. Chao A, Simon Freeman R, Grether G (2013) Patterns of niche partitioning and alternative reproductive strategies in an East African dung beetle assemblage. J Insect Behav 26(4):525–539.  https://doi.org/10.1007/s10905-012-9364-2 CrossRefGoogle Scholar
  8. Erasmus BFN, Van Jaarsveld AS, Chown SL, Kshatriya M, Wessels KJ (2002) Vulnerability of South African animal taxa to climate change. Glob Chang Biol 8(7):679–693.  https://doi.org/10.1046/j.1365-2486.2002.00502.x CrossRefGoogle Scholar
  9. Feer F, Pincebourde S (2005) Diel flight activity and ecological segregation with in an assemblage of tropical forest dung and carrion beetles. J Trop Ecol 21(01):21–30.  https://doi.org/10.1017/S0266467404002056 CrossRefGoogle Scholar
  10. Fincher GT, Davis R, Bonner-Stewart T (1971) Flight activity of coprophagous beetles on a swine pasture. Ann Entomol Soc Am 64(4):855–860.  https://doi.org/10.1093/aesa/64.4.855 CrossRefGoogle Scholar
  11. Hanski I, Cambefort Y (1991) Resource partitioning. In: Hanski I, Cambefort Y (eds) Dung beetle ecology. Princeton University Press, Princeton, pp 330–349Google Scholar
  12. Hastings JM, Toolson EC (1991) Thermoregulation and activity patterns of two syntopic cicadas, Tibicen chiricahua and T. duryi (Homoptera: Cicadidae), in central New Mexico. Oecología 85:513–520CrossRefGoogle Scholar
  13. Heinrich B (1976) Resource partitioning among some eusocial insects: bumblebees. Ecology 57(5):874–889.  https://doi.org/10.2307/1941054 CrossRefGoogle Scholar
  14. Hill RW, Wyse GA, Anderson M (2006) Relaciones térmicas. In: Hill RW, Wyse GA, Anderson M (eds) Fisiología Animal. Panamericana, Madrid, pp 221–280Google Scholar
  15. Huey RB, Stevenson RD (1979) Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am Zool 19(1):357–366.  https://doi.org/10.1093/icb/19.1.357 CrossRefGoogle Scholar
  16. Klok CJ, Chown SL (1997) Critical thermal limits, temperature tolerance y water balance of a sub-Antarctic caterpillar, Pringleophaga marioni (Lepidoptera: Tineidae). J Insect Physiol 43(7):685–694.  https://doi.org/10.1016/S0022-1910(97)00001-2 CrossRefGoogle Scholar
  17. Krell-Westerwalbesloh S, Krell FT, Linsenmair KE (2004) Diel separation of Afrotropical dung beetle guilds—avoiding competition and neglecting resources. Ann Mag Nat Hist 38(17):2225–2249.  https://doi.org/10.1080/00222930310001618921 CrossRefGoogle Scholar
  18. Lumaret JP, Iborra O (1996) Separation of trophic niches by dung beetles (Coleoptera Scarabaeoidea) in overlapping habitats. Pedobiologia 40:392–404Google Scholar
  19. Lutterschmidt WI, Hutchinson VH (1997) The critical thermal maximum: data to support the onset of spasms as the definitive end point. Can J Zool 75(10):1553–1560.  https://doi.org/10.1139/z97-782 CrossRefGoogle Scholar
  20. May ML (1979) Insect thermoregulation. Annu Rev Entomol 24(1):313–349.  https://doi.org/10.1146/annurev.en.24.010179.001525 CrossRefGoogle Scholar
  21. Merrick MJ, Smith RJ (2004) Temperature regulation in burying beetles (Nicrophorus spp.: Coleoptera: Silphidae): effects of body size, morphology and environmental temperature. J Exp Biol 207(5):723–733.  https://doi.org/10.1242/jeb.00807 CrossRefPubMedGoogle Scholar
  22. Monteresino EM, Zunino M (2003) Sobre el comportamiento de alimentación y nidificación de Eucraniini (Coleoptera: Scarabaeidae: Scarabaeinae). Soc Entomol Aragonesa 3:75–80Google Scholar
  23. Ocampo FC (2004) Food relocation behavior and sinopsis of the southern South American genus Glyphoderus Westwood (Scarabaeidae: Scarabaeinae: Eucraniini). Coleopt Bull 58(2):295–305.  https://doi.org/10.1649/685 CrossRefGoogle Scholar
  24. Ocampo FC (2007) The Argentinean dung beetle genus Anomiopsoides (Scarabaeidae: Scarabaeinae: Eucraniini): description of a new species, and new synonymies for A. heteroclyta. Rev Soc Entomol Arg 66:159–168Google Scholar
  25. Ocampo FC (2009) Cambio de hábitos alimenticios como estrategia para la colonización de un ambiente desfavorable. Rev Soc Entomol Arg 20:14–16Google Scholar
  26. Ocampo FC (2010a) A revision of the Argentinean endemic genus Eucranium Brullé (Coleoptera: Scarabaeidae: Scarabaeinae) with description of one new species and new synonymies. J Insect Sci 10(205):1–25.  https://doi.org/10.1673/031.010.20501 CrossRefGoogle Scholar
  27. Ocampo FC (2010b) The South American dung beetle genus Ennearabdus Lansberge (Coleoptera: Scarabaeidae: Scarabaeinae: Eucraniini). J Insect Sci 10(93):1–12.  https://doi.org/10.1673/031.010.9301 CrossRefGoogle Scholar
  28. Ocampo FC, Hawks DC (2006) Molecular phylogenetics and evolution of the food relocation behaviour of the dung beetle tribe Euraniini (Coleoptera: Scarabaeidae: Scarabaeinae). Invertebr Syst 20(5):557–570.  https://doi.org/10.1071/IS05031 CrossRefGoogle Scholar
  29. Ocampo FC, Philips TK (2005) Food relocation and nesting behavior of the Argentinian dung beetle genus Eucranium Brullé and comparison with the southwest African Scarabaeus (Pachysoma) MacLeay (Coleoptera: Scarabaeidae: Scarabaeinae). Rev Soc Entomol Arg 64:53–59Google Scholar
  30. Roberts CS, Seely MK, Ward D, Mitchell D, Campbell JD (1991) Body temperatures of Namib desert tenebrionid beetles: their relationship in laboratory and field. Physiol Entomol 16(4):463–475.  https://doi.org/10.1111/j.1365-3032.1991.tb00586.x CrossRefGoogle Scholar
  31. Sheldon KS, Tewksbury JJ (2014) The impact of seasonality in temperature on thermal tolerance and elevational range size of tropical and temperate beetles. Ecology 95(8):2134–2143.  https://doi.org/10.1890/13-1703.1 CrossRefPubMedGoogle Scholar
  32. Scheers H, Van Damme R (2002) Micro-scale differences in thermal hábitat quality and a possible case of evolutionary flexibility in the thermal physiology of lacertid lizards. Oecologia 132(3):323–331.  https://doi.org/10.1007/s00442-002-0970-0 CrossRefPubMedGoogle Scholar
  33. Sunday JM, Bates AE, Dulvy NK (2011) Global analysis of thermal tolerance and latitude in ecthoterms. Proc R Soc 278(1713):1823–1830.  https://doi.org/10.1098/rspb.2010.1295 CrossRefGoogle Scholar
  34. Tokeshi M (1999) Species coexistence: ecological and evolutionary perspectives. Blackwell Science, OxfordGoogle Scholar
  35. Verdú JR, Díaz A, Galante E (2004) Thermoregulatory strategies in two closery related sympatric Scarabaeus species (Coleoptera: Scarabaeinae). Physiol Entomol 29(1):32–38.  https://doi.org/10.1111/j.0307-6962.2004.0359.x CrossRefGoogle Scholar
  36. Verdú JR, Arellano L, Numa C (2006) Thermoregulation in endotermic dung beetles (Coleoptera: Scarabaeidae): effect of body size and ecophysiological constraints in flight. J Insect Physiol 52(8):854–860.  https://doi.org/10.1016/j.jinsphys.2006.05.005 CrossRefPubMedGoogle Scholar
  37. Verdú JR, Arellano L, Numa C, Mico E (2007) Roles of endothermy in niche differentiation for ball-rolling dung beetles (Coleoptera: Scarabaeidae) along an altitudinal gradient. Ecol Entomol 32(5):544–551.  https://doi.org/10.1111/j.1365-2311.2007.00907.x CrossRefGoogle Scholar
  38. Verdú JR, Lobo J (2008) Ecophysiology of thermorregulation in endothermic dung beetles: ecological and geographical implication. In: Fattorini S (ed) Insect ecology and conservation. Research Singnpost, Kenala, pp 1–28Google Scholar
  39. Verdú JR, Alba-Tercedor J, Jiménez-Manrique M (2012) Evidence of different thermoregulatory mechanisms between two sympatric Scarabaeus species using infrared thermography and micro-computer tomography. PLoS One 7(3):e33914.  https://doi.org/10.1371/journal.pone.0033914 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ybarrondo BA, Heinrich B (1996) Thermoregulation and response to competition in the African dung beetle Kheper nigroaeneus (Coleoptera: Scarabaeidae). Physiol Zool 69(1):35–48.  https://doi.org/10.1086/physzool.69.1.30164199 CrossRefGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2017

Authors and Affiliations

  • V C Giménez Gómez
    • 1
    • 2
    Email author
  • S B Lomáscolo
    • 2
    • 3
  • G A Zurita
    • 1
    • 4
  • F Ocampo
    • 2
    • 5
  1. 1.Instituto de Biología SubtropicalUniv Nacional de Misiones – CONICETPuerto IguazúArgentina
  2. 2.Instituto de Investigaciones de las Zonas Áridas (IADIZA)CCT – CONICET MendozaMendozaArgentina
  3. 3.Instituto de Ecología Regional, Residencia Universitaria Horco MolleUniv Nacional de TucumánYerba BuenaArgentina
  4. 4.Facultad de Ciencias ForestalesUniv Nacional de MisionesEldoradoArgentina
  5. 5.AgIdeaPergaminoArgentina

Personalised recommendations