A Bird in the Hand Versus Two in the Bush? The Specialist Leafhopper Dalbulus maidis (Hemiptera: Cicadellidae) Does Not Discriminate Against Sub-optimal Host Plants (Zea spp.)

Ecology, Behavior and Bionomics


The corn leafhopper [Dalbulus maidis (DeLong & Wolcott)] is a specialist on Zea (Poaceae) that coevolved with maize (Zea mays mays) and its teosinte (Zea spp.) relatives. This study tested the hypothesis that host acceptance by females varies among Zea hosts, and is correlated with variation in defensive levels across those hosts. Prior studies revealed differences in plant defenses among Zea hosts and corresponding differences in corn leafhopper performance. Thus, host acceptance was expected to be correlated with defensive levels and offspring performance across Zea hosts, following the hypothesis that offspring performance mediates host preference. In parallel, host acceptance was expected to be correlated with transitions in life history strategy (perennial to annual life cycle), domestication status (wild to domesticated), and breeding intensity (landrace to hybrid variety) in Zea because variation in defensive levels and corn leafhopper performance were shown in prior studies to be correlated with those transitions. The study’s hypotheses were tested by comparing, under no-choice conditions, host acceptance by corn leafhopper of a suite of Zea hosts encompassing those transitions: perennial teosinte (Zea diploperennis), Balsas teosinte (Zea mays parviglumis), and landrace and commercial hybrid maize. The results did not show differences in host acceptance for oviposition or feeding among the hosts. Thus, under no-choice conditions, all Zea hosts may be similarly acceptable for feeding and oviposition, despite marked ovipositional preferences under choice conditions and poorer offspring performance on teosintes relative to maize shown previously. The results suggested also that oviposition frequency per plant by females was not correlated with their offspring’s performance.


Host selection preference-performance hypothesis corn leafhopper maize teosinte domestication 


  1. Backus EA, Hunter WB, Arne CN (1988) Technique for staining leafhopper (Homoptera, Cicadellidae) salivary sheaths and eggs within unsectioned plant-tissue. J Econ Entomol 81: 1819–1823Google Scholar
  2. Bellota E, Medina RF, Bernal JS (2013) Physical leaf defenses—altered by Zea life-history evolution, domestication, and breeding—mediate oviposition preference of specialist leafhopper. Entomol Exp Appl 149:185–195CrossRefGoogle Scholar
  3. Carpane P, Wayadande A, Backus E, Dolezal W, Fletcher J (2011) Characterization and correlation of new electrical penetration graph waveforms for the corn leafhopper (Hemiptera: Cicadellidae). Ann Entomol Soc Am 104:515–525CrossRefGoogle Scholar
  4. Chen, YH, Gols, R, Benrey, B (2015) Crop domestication and its impact on naturally selected trophic interactions. Annu Rev Entomol 60: 35-58. doi:10.1146/annurev-ento-010814-020601
  5. Chinchilla-Ramírez M, Borrego E, DeWitt T, Kolomiets M, Bernal J (2017) Maize seedling morphology and defense hormone profiles, but not herbivory tolerance, were mediated by domestication and modern breeding. Annals of Applied Biology, accepted for publicationGoogle Scholar
  6. Dávila-Flores A, DeWitt T, Bernal J (2013) Facilitated by nature and agriculture: performance of a specialist herbivore improves with host-plant life history evolution, domestication, and breeding. Oecologia 173:1425–1437CrossRefPubMedGoogle Scholar
  7. de Lange E, Balmer D, Mauch-Mani B, Turlings TCJ (2014) Insect and pathogen attack and resistance in maize and its wild ancestors, the teosintes. New Phytol 204(2):329–341CrossRefGoogle Scholar
  8. Gómez LG, Carpane P, Ramallo J, Pecci MG, Laguna IG, Virla EG, Díaz CG (2004) Evaluación preliminar de la disminución en la producción de maíz causada por el" Corn Stunt Spiroplasma"(CSS) en Tucumán, Argentina. Boletín de sanidad vegetal. Plagas 30(2):403–414Google Scholar
  9. Gripenberg S, Mayhew PJ, Parnell M, Roslin T (2010) A meta-analysis of preference–performance relationships in phytophagous insects. Ecol Lett 13:383–393CrossRefPubMedGoogle Scholar
  10. Heady SE, Madden LV, Nault LR (1985) Oviposition behavior of Dalbulus leafhoppers (Homoptera, Cicadellidae). Ann Entomol Soc Am 78:723–727CrossRefGoogle Scholar
  11. Heisswolf A, Obermaier E, Poethke HJ (2005) Selection of large host plants for oviposition by a monophagous leaf beetle: nutritional quality or enemy-free space? Ecol Entomol 30:299–306CrossRefGoogle Scholar
  12. Hilker M, Meiners T (2011) Plants and insect eggs: how do they affect each other? Phytochemistry 72:1612–1623CrossRefPubMedGoogle Scholar
  13. Hu J, Zhou J, Peng X, Xu H, Liu C, Du B, Yuan H, Zhu L, He G (2011) The Bphi008a gene interacts with the ethylene pathway and transcriptionally regulates MAPK genes in the response of rice to brown planthopper feeding. Plant Physiol 156(2):856–872CrossRefPubMedPubMedCentralGoogle Scholar
  14. Louis J, Basu S, Varsani S, Castano-Duque L, Jiang V, Williams WP, Felton GW, Luthe DS (2015) Ethylene contributes to maize insect resistance1-mediated maize defense against the phloem sap-sucking corn leaf aphid. Plant Physiol 169(1):313–324CrossRefPubMedPubMedCentralGoogle Scholar
  15. Maag D, Erb M, Bernal JS, Wolfender J-L, Turlings TCJ, Glauser G (2015) Maize domestication and anti-herbivore defences: leaf-specific dynamics during early ontogeny of maize and its wild ancestors. PloS one, 10(8), p.e0135722Google Scholar
  16. Madden LR, Nault LR, Heady SE, Styer WE (1984) Effect of maize stunting mollicutes on survival and fecundity of Dalbulus leafhopper vectors. Ann Appl Biol 105:431–441CrossRefGoogle Scholar
  17. Madden LR, Nault LR, Heady SE, Styer WE (1986) Effect of temperature on the population dynamics of three Dalbulus leafhopper species. Ann Appl Biol 108:475–485CrossRefGoogle Scholar
  18. Matsuoka Y, Vigouroux Y, Goodman MM, Sánchez GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci U S A 99:6080–6084CrossRefPubMedPubMedCentralGoogle Scholar
  19. Mayhew PJ (2001) Herbivore host choice and optimal bad motherhood. Trends Ecol Evol 16:165–167CrossRefPubMedGoogle Scholar
  20. Medina RF, Reyna SM, Bernal JS (2012) Population genetic structure of a specialist leafhopper on Zea: likely anthropogenic and ecological determinants of gene flow. Entomol Exp Appl 142:223–235CrossRefGoogle Scholar
  21. Moya-Raygoza G, Palomera-Avalos V, Galaviz-Mejia C (2007) Field overwintering biology of Spiroplasma kunkelii (Mycoplasmatales: Spiroplasmataceae) and its vector Dalbulus maidis (Hemiptera: Cicadellidae). Ann Appl Biol 151:373–379CrossRefGoogle Scholar
  22. Nault LR, Bradfute OE (1979) Corn stunt: involvement of a complex of leafhopper-borne pathogens. Maramorosch, K.; Harris, KF [Editors]: Leafhopper vectors and plant disease agents: 561–586Google Scholar
  23. Nault LR (1990) Evolution of an insect pest—maize and the corn leafhopper, a case-study. Maydica 35:165–175Google Scholar
  24. Nault LR, Delong DM (1980) Evidence for co-evolution of leafhoppers in the genus Dalbulus (Cicadellidae, Homoptera) with maize and its ancestors. Ann Entomol Soc Am 73:349–353CrossRefGoogle Scholar
  25. Nault LR, Madden LV (1985) Ecological strategies of Dalbulus leafhoppers. Ecol Entomol 10:57–63CrossRefGoogle Scholar
  26. Palomera V, Bertin S, Rodríguez A, Bosco D, Virla E, Moya-Raygoza G (2012) Is there any genetic variation among native Mexican and Argentinian populations of Dalbulus maidis (Hemiptera: Cicadellidae)? Fl Entomol 95:150–155CrossRefGoogle Scholar
  27. Pitre HN (1967) Greenhouse studies of host range of Dalbulus maidis a vector of corn stunt virus. J Econ Entomol 60:417–421CrossRefGoogle Scholar
  28. Redinbaugh MG, Zambrano-Mendoza JL (2014) Control of virus diseases in maize. Adv. Virus Res 90:391–429CrossRefGoogle Scholar
  29. Refsnider JM, Janzen FJ (2010) Putting eggs in one basket: ecological and evolutionary hypotheses for variation in oviposition-site choice. Ann Rev Ecol Evol Syst 41:39–57CrossRefGoogle Scholar
  30. Roitberg BD, Robertson IC, Tyerman JGA (1999) Vive la variance: a functional oviposition theory for insect herbivores. Entomol Exp Appl 91:187–194CrossRefGoogle Scholar
  31. Rosenthal JP, Dirzo R (1997) Effects of life history, domestication and agronomic selection on plant defence against insects: evidence from maizes and wild relatives. Evol Ecol 11:337–355CrossRefGoogle Scholar
  32. Sánchez-González JJ (2011) Diversidad del maíz y el teocintle. Informe preparado para el proyecto: “Recopilación, generación, actualización y análisis de información acerca de la diversidad genética de maíces y sus parientes silvestres en México”. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Manuscrito. http://www.biodiversidad.gob.mx/genes/pdf/proyecto/Anexo9_Analisis_Especialistas/Jesus_Sanchez_2011.pdf. Accessed 31 May 2016
  33. Scheirs J, De Bruyn L, Verhagen R (2000) Optimization of adult performance determines host choice in a grass miner. Proc Royal Soc London Series B 267:2065–2069CrossRefGoogle Scholar
  34. Summers CG, Newton AS, Opgenorth DC (2004) Overwintering of corn leafhopper, Dalbulus maidis (Homoptera: Cicadellidae), and Spiroplasma kunkelii (Mycoplasmatales: Spiroplasmataceae) in California’s San Joaquin Valley. Environ Entomol 33:1644–1651CrossRefGoogle Scholar
  35. UNESCO 2011. MAB Biosphere Reserves Directory: Sierra de Manantlan - Mexico. http://www.unesco.org/mabdb/br/brdir/directory/biores.asp?code=MEX+06&mode=all Accessed 31 May 2016
  36. Vásquez J, Mora E (2007) Incidence of and yield loss caused by maize rayado fino virus in maize cultivars in Ecuador. Euphytica 153(3):339–342CrossRefGoogle Scholar
  37. Wayadande AC, Nault LR (1996) Leafhoppers on leaves: an analysis of feeding behavior using conditional probabilities. J Insect Behav 9:3–22CrossRefGoogle Scholar
  38. Wen W, Franco J, Chavez-Tovar VH, Yan J, Taba S (2012) Genetic characterization of a core set of a tropical maize race Tuxpeño for further use in maize improvement. PLoS One 7(3):e32626. doi:10.1371/journal.pone.0032626 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zambrano JL, Francis DM, Redinbaugh MG (2013) Identification of resistance to maize rayado fino virus in maize inbred lines. Plant Dis 97(11):1418–1423CrossRefGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2017

Authors and Affiliations

  1. 1.Dept of EntomologyTexas A&M UnivCollege StationUSA
  2. 2.Dept of EntomologyTexas A&M UnivCollege StationUSA

Personalised recommendations