Advertisement

Neotropical Entomology

, Volume 47, Issue 1, pp 62–68 | Cite as

Lioptilodes friasi (Lepidoptera: Pterophoridae) Niche Breadth in the Chilean Mediterranean Matorral Biome: Trophic and Altitudinal Dimensions

  • Héctor A. VargasEmail author
  • Sergio Rasmann
  • Pamela Ramirez-Verdugo
  • Cristian A. Villagra
Ecology, Behavior and Bionomics

Abstract

Understanding the factors driving the diet breadth of phytophagous insects remains one of the main questions in ecological research. In this study we explored the diet breadth and plant-insect associations in the plume moth Lioptilodes friasi Vargas & Parra (Lepidoptera: Pterophoridae). This phytophagous insect was originally described in association with a single host species, Haplopappus foliosus (Asteraceae), a native shrub of the Chilean Mediterranean matorral. In order to address the breadth of host plant choice, we surveyed other Haplopappus species growing along the elevation gradient of central Chile from sea level to 2600 m. We were able to obtain L. friasi adults from five additional Haplopappus species: Haplopappus chrysantemifolius and Haplopappus decurrens from the coastal zone, Haplopappus multifolius and Haplopappus schumanii from the mid-elevation zone, and Haplopappus scrobiculatus at high elevation. Our results demonstrate that the genus-specialized endophagous herbivore L. friasi has a wider distribution and climatic tolerance than previously described. Its biogeographical range extends from the lowland coastal habitats up to the Andean subnival level. We propose that shared flower phenotypic traits such as morphology and chemical composition may have allowed the colonization of closely related Haplopappus species in central Chile, the expansion of which is limited by the harsh high elevation conditions.

Keywords

Trophic niche developmental plasticity ecophysiology 

Notes

Acknowledgments

We thank Professor Rodrigo Villaseñor and Dr. Rosita Scherson for plant identification. We are also grateful to Marcela Cordero, Pedro Mendez, Camila Gonzalez, Alvaro Astudillo, Alvaro Villa, Constanza Schapheer, and Angelos Katsanis for help during field and laboratory work, two anonymous reviewers for valuable suggestions on a preliminary version, and Lafayette Eaton for checking the English. This research was funded by FONDECYT Iniciación No. 11100109, CONICYT, Inserción No. 79100013 to CAV, and a CNIC-NSF No. 1404687 grant to SR.

References

  1. Ødegaard F (2000) How many species of arthropods? Erwin’s estimate revised. Biol J Linn Soc Lond 71:583–597Google Scholar
  2. Agosta SJ (2006) On ecological fitting, plant-insect associations, herbivore host shifts, and host plant selection. Oikos 114:556–565CrossRefGoogle Scholar
  3. Ali JG, Agrawal A (2012) Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17:293–302CrossRefPubMedGoogle Scholar
  4. Almeida AM, Fonseca CR, Prado PI, Almeida-Neto M, Diniz S, Kubota U, Braun MR, Raimundo RLG, Anjos LA, Mendonça TG, Futada SM, Lewinsohn TM (2006) Assemblages of endophagous insects on Asteraceae in São Paulo Cerrados. Neotrop Entomol 35:458–468CrossRefPubMedGoogle Scholar
  5. Andrade B, Hidalgo R (1996) La zona costera y los instrumentos de planificación territorial: Litoral de la Provincia de Petorca. Rev. Geogr. Chile Terra Australis 41:111–120Google Scholar
  6. Andrew ME, Wulder MA, Coops NC, Baillargeon G (2012) Beta-diversity gradients of butterflies along productivity axes. Glob Ecol Biogeogr 21:352–364Google Scholar
  7. Armesto J, Arroyo MTK, Hinojosa LF (2007) The Mediterranean environment of Central Chile. In: Veblen TT, Young KR, Orme AR (eds) The physical geography of South America. Oxford University Press, New York, pp 184–199Google Scholar
  8. Arroyo MT, Armesto JJ, Villagran C (1981) Plant phenological patterns in the high Andean Cordillera of Central Chile. J Ecol 69:205–223CrossRefGoogle Scholar
  9. Arroyo MT, Primack R, Armesto J (1982) Community studies in pollination ecology in the high temperate Andes of Central Chile. I. Pollination mechanisms and altitudinal variation. Am J Botany 69:82–97CrossRefGoogle Scholar
  10. Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16Google Scholar
  11. Bates D, Maechler M, Ben B, Walker S (2015) Fitting linear mixed-effects models using lme4 J stat soft 67:1-48Google Scholar
  12. Bernays EA (1999) Plasticity and the problem of choice in food selection. Ann Entomol Soc Am 92:944–951CrossRefGoogle Scholar
  13. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution trends Ecol EvolGoogle Scholar
  14. Bush GL (1969) Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera, Tephritidae). Evolution 23:237–251CrossRefPubMedGoogle Scholar
  15. Bush GL (1992) Host race formation and sympatric speciation in Rhagoletis fruit flies (Diptera: Tephritidae). Psyche 99:335–357CrossRefGoogle Scholar
  16. Cavieres L, Peñaloza A, Arroyo M (2000) Altitudinal vegetation belts in the high-Andes of central Chile (33 S). Rev Chil Hist Nat 73:331–344CrossRefGoogle Scholar
  17. Connor EF, Taverner MP (1997) The evolution and adaptive significance of the leaf-mining habit. Oikos 79:6–25CrossRefGoogle Scholar
  18. Di Castri F, Hajek ER (1976) Bioclimatografía de Chile. Ediciones Universidad Católica de Chile, Santiago, p 225Google Scholar
  19. Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608CrossRefGoogle Scholar
  20. Erwin TL (1982) Tropical forests: Their richness in Coleoptera and other arthropod species. Coleopt Bull 36:74–75Google Scholar
  21. Forister ML, Novotny V, Panorska AK, Baje L, Basset Y, Butterill PT, Cizek L, Coley PD, Dem F, Diniz IR, Drozd P, Fox M, Glassmire AE, Hazen R, Hrcek J, Jahner JP, Kaman O, Kozubowski TJ, Kursar TA, Lewis OT, Lill J, Marquis RJ, Miller SE, Morais HC, Murakami M, Nickel H, Pardikes NA, Ricklefs RE, Singer MS, Smilanich AM, Stiremant JO, Villamarín-Cortez S, Vodka S, Volf M, Wagner DL, Walla T, Weiblen GD, Dyer LA (2015) The global distribution of diet breadth in insect herbivores Proc Natl Acad Sci USA 112:442–447Google Scholar
  22. Fox CW, Lalond RG (1993) Host confusion and the evolution of insect diet breadths. Oikos 67:577–581CrossRefGoogle Scholar
  23. Frei ER, Hahn T, Ghazoul J, Pluess AR (2014) Divergent selection in low and high elevation populations of a perennial herb in the Swiss Alps. Alp Bot 124:131–142Google Scholar
  24. Frías D (2005) Trupanea simpatrica a new species of Tephritinae (Diptera: Tephritidae) infesting an endemic Haplopappus hybrid (Asteraceae) in Chile. Acta Entomol Chilena 29:13–45Google Scholar
  25. Gajardo R (1994) La Vegetación Natural de Chile. Clasificación y Distribución Geográfica. Editorial Universitaria, Santiago, p 165Google Scholar
  26. Gielis C (1991) A taxonomic review of the Pterophoridae (Lepidoptera) from Argentina and Chile. Zool Verhandel 269:1–164Google Scholar
  27. Gielis C (2006) Review of the Neotropical species of the family Pterophoridae, part I: Ochyrocticinae, Deuterocopinae, Pterophorinae (Platyptiliini, Exelastini, Oxyptilini) (Lepidoptera). Zool Meded 80:1–290Google Scholar
  28. Gielis C (2014) Review of the Neotropical species of the family Pterophoridae, part 5: additions from Peru, Ecuador, Colombia, Venezuela and the Guyanas (Lepidoptera). Bol SEA 55:67–91Google Scholar
  29. Hall H (1928) The genus Haplopappus, a phylogenetic study in the Compositae. Carnegie Institution of Washington, Washington D.C., p 365Google Scholar
  30. Hardy NB, Otto SP (2014) Specialization and generalization in the diversification of phytophagous insects: tests of the musical chairs and oscillation hypotheses. Proc Roy Soc B 281:2013–2960CrossRefGoogle Scholar
  31. Heard SB (2012) Use of host-plant trait space by phytophagous insects during host-associated differentiation: the gape-and-pinch model. Int J Ecol 2012:192345CrossRefGoogle Scholar
  32. Herde M, Howe GA (2014) Host plant-specific remodeling of midgut physiology in the generalist insect herbivore Trichoplusia ni. Insect Biochem Mol Biol 50:58–67CrossRefPubMedGoogle Scholar
  33. Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80:489–513CrossRefPubMedGoogle Scholar
  34. Kaminski LA, Freitas AVL (2010) Natural history and morphology of immature stages of the butterfly Allosmaitia strophius (Godart) (Lepidoptera: Lycaenidae) on flower buds of Malpighiaceae. Stud Neotrop Fauna E 45:11–19CrossRefGoogle Scholar
  35. Klingenberg L (2007) Monographie der südamerikanischen Gattungen Haplopappus Cass. Und Notopappus L. Klingenberg (Asteraceae-Astereae). Series Bibliotheca Botanica, Heft, Schweizerbartsche Verlagsbuchhandlung, Berlin, p 331Google Scholar
  36. Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol & Evol 22:569–574CrossRefGoogle Scholar
  37. Korner-Nievergelt F, Roth T, von Felten S, Guelat J, Almasi B, Korner-Nievergelt P (2015) Bayesian data analysis in ecology using linear models with R, BUGS and Stan. Elsevier, Amsterdam, NetherlandsGoogle Scholar
  38. Larsson S, Ekbom B (1995) Oviposition mistakes in herbivorous insects: confusion or a step towards a new host plant? Oikos 72:155–160CrossRefGoogle Scholar
  39. Lawton JH, MacGarvin M, Heads PA (1987) Effects of altitude on the abundance and species richness of insect herbivores on bracken. J Anim Ecol 56:147–160Google Scholar
  40. Luebert F, Pliscoff P (2006) Sinopsis bioclimática y vegetacional de Chile, Primera edn. Editorial Universitaria, Universidad de Chile, Santiago de Chile. ChileGoogle Scholar
  41. Mader BJ, Daoust SP, Cardinal-Aucoin M, Bauce E, Despland E (2012) Larval experience induces adult aversion to rearing host plants: a novel behaviour contrary to Hopkins’ host selection principle. Ecol Entomol 37:204–211CrossRefGoogle Scholar
  42. Matthews DH, Lott TA (2005) Larval host plants of the Pterophoridae (Lepidoptera: Pterophoridae). Mem Am Entomol Inst 76:1–324Google Scholar
  43. Matthews DH, Pérez ME (2014) Description of the natural history and immature stages of Postplatyptilia caribica Gielis in Puerto Rico (Lepidoptera: Pterophoridae). Zootaxa 3821:363–372CrossRefPubMedGoogle Scholar
  44. Matthews DL, Miller JY, Simon MJ, Goss G (2012) Observations of plume moths on North Andros Island, Bahamas, and notes on new records and species previously recorded from the Bahamas (Lepidoptera: Pterophoridae). Insecta Mundi 236:1–12Google Scholar
  45. Matsubayashi KW, Ohshima I, Nosil P (2010) Ecological speciation in phytophagous insects. Entomol Exp Appl 134:1–27CrossRefGoogle Scholar
  46. Menéndez R, Thomas CD (2000) Metapopulation structure depends on spatial scale in the host-specific moth Wheeleria spilodactylus (Lepidoptera: Pterophoridae). J Anim Ecol 69:935–951CrossRefGoogle Scholar
  47. Mopper S (2005) Phenology—how time creates spatial structure in endophagous insect populations. Ann Zool Fenn 42:327–333Google Scholar
  48. Moreira-Muñoz A (2011) Plant geography of Chile. In: MJA W (ed) Plant and vegetation series Vol 5. Springer, Berlin, pp 3–45Google Scholar
  49. Muñoz-Schick M, Moreira A, Villagrán C, Luebert F (2000) Caracterización florística y pisos de vegetación en los Andes de Santiago, Chile Central. Bol Mus Nac Hist Nat Chile 49:9–50Google Scholar
  50. Parsons DJ, Parsons BY (1976) Vegetation structure in the Mediterranean scrub communities of California and Chile. J Ecol 64:435–447CrossRefGoogle Scholar
  51. Pellissier L, Fiedler K, Ndribe C, Dubuis A, Pradervand J-N, Guisan A, Rasmann S (2012) Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecol Evol 2:1818–1825Google Scholar
  52. Rasmann S, Alvarez N, Pellissier L (2014a) The altitudinal niche-breadth hypothesis in insect-plant interactions. Annual Plant Reviews 47:339–360Google Scholar
  53. R: A language and environment for statistical computing (2015) R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.
  54. Sandre S-L, Kaasik A, Eulitz U, Tammaru T (2013) Phenotypic plasticity in a generalist insect herbivore with the combined use of direct and indirect cues. Oikos 122:1626–1635CrossRefGoogle Scholar
  55. Scheidel U, Röhl S, Bruelheide H (2003) Altitudinal gradients of generalist and specialist herbivory on three montane Asteraceae. Acta Oecol 24:275–283CrossRefGoogle Scholar
  56. Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect–plant biology. Second. Oxford University Press, Oxford, p 421Google Scholar
  57. Singer MS, Stireman JO (2005) The tri-trophic niche concept and adaptive radiation of phytophagous insects. Ecol Lett 8:1247–1255CrossRefGoogle Scholar
  58. Strong DR (1979) Biogeographic dynamics of insect-host plant communities. Annu Rev Entomol 24:89–119CrossRefGoogle Scholar
  59. Strong DR, Lawton JH, Southwood R (1984) Insects on plants: community patterns and mechanisms. Blackwell Scientific, Oxford, p 313Google Scholar
  60. Thompson JN (2005) The geographic mosaic of coevolution. The University of Chicago Press, Chicago, p 400Google Scholar
  61. Vargas HA (2010) A new species of Lioptilodes Zimmerman (Lepidoptera, Pterophoridae) from northern Chile. Rev Bras Entomol 54:428–430CrossRefGoogle Scholar
  62. Vargas HA, Parra LE (2005) Una nueva especie de Lioptilodes Zimmerman (Lepidoptera: Pterophoridae) de Chile. Neotrop Entomol 34:403–406Google Scholar
  63. Villa-Correa A (2015) Influencia del hospedero en el tamaño corporal y la morfología genital de Lioptilodes friasi (Lepidoptera: Pterophoridae). Master thesis, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile, p 66Google Scholar
  64. Villagra CA, Astudillo-Meza A, Urzúa A (2014) Differences in arthropods found in flowers versus trapped in plant resins on Haplopappus platylepis Phil. (Asteraceae): can the plant discriminate between pollinators and herbivores? Arthropod Plant Interact 8:411–419CrossRefGoogle Scholar
  65. Ward LK, Hackshaw A, Clarke RT (2003) Do food-plant preferences of modern families of phytophagous insects and mites reflect past evolution with plants? Biol J Linn Soc 78:51–83CrossRefGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2017

Authors and Affiliations

  • Héctor A. Vargas
    • 1
    Email author
  • Sergio Rasmann
    • 2
  • Pamela Ramirez-Verdugo
    • 3
  • Cristian A. Villagra
    • 4
  1. 1.Depto de Recursos Ambientales, Facultad de Ciencias AgronómicasUniv de TarapacáAricaChile
  2. 2.Institute of BiologyUniv of NeuchâtelNeuchâtelSwitzerland
  3. 3.Herbario VALPL-Lab de BotánicaUniv de Playa AnchaValparaisoChile
  4. 4.Instituto de Entomología, Facultad de Ciencias BásicasUniv Metropolitana de Ciencias de la EducaciónSantiagoChile

Personalised recommendations