Advertisement

Neotropical Entomology

, Volume 46, Issue 5, pp 546–553 | Cite as

Optimization of Methodology for Rearing Spodoptera albula on Artificial Diet

  • M M Di BelloEmail author
  • B H S Souza
  • L Nogueira
  • Z A Ribeiro
  • W I Eduardo
  • A L Boiça Júnior
Systematics, Morphology and Physiology

Abstract

Advances in techniques for rearing insects on artificial diets are fundamental to solving issues of basic and applied entomology. In this study, we evaluated the development of Spodoptera albula (Walker) (Lepidoptera: Noctuidae) on three artificial diets used for other species of Lepidoptera, at three larval densities, and two densities of adult couples housed in oviposition cages of two sizes, with the aim of optimizing methodology for rearing S. albula in the laboratory. Biological parameters were recorded from S. albula, and a fitness index was calculated based on the larval survival and duration and weight of pupae. The total and daily oviposition was recorded using 5 or 10 adult couples of S. albula housed in two cage sizes. Concentrations of total nitrogen and protein in the tested diets were determined. Development of S. albula was completed in all artificial diets; however, the diet used for rearing Anticarsia gemmatalis (Hübner) larvae was the most suitable for S. albula, yielding intermediate development time and higher survival relative to the other diets. Individualization of larvae favored S. albula development by producing overall greater weights of larvae and pupae, higher survival rates, and longer adult longevity. Cage size and number of couples per cage did not influence S. albula fecundity in the experiment conditions. Spodoptera albula can be satisfactorily reared on the artificial diet used for A. gemmatalis, using one larva per tube, and either density of adults at any cage size. Additional amendments are needed in the rearing methodology to achieve optimal conditions for larval development to adulthood.

Keywords

Insect nutrition insect rearing larval density oviposition cage protein content 

References

  1. Agnew P, Hide M, Sidobre C, Michalakis Y (2002) A minimalist approach to the effects of density-dependent competition on insect life-history traits. Ecol Entomol 27:396–402CrossRefGoogle Scholar
  2. Assemi H, Rezapanah M, Vafaei-Shoushtari R, Mehrvar A (2012) Modified artificial diet for rearing of tobacco budworm, Helicoverpa armigera, using the Taguchi method and Derringer’s desirability function. J Insect Sci 12:1–18CrossRefGoogle Scholar
  3. Association of Official Analytical Chemistry (AOAC) (1990) Official methods of analysis, 15th edn. AOAC, ArlingtonGoogle Scholar
  4. Bavaresco A, Garcia MS, Grützmacher AD, Ringenberg R, Foresti J (2004) Adequação de uma dieta artificial para a criação de Spodoptera cosmioides (Walk) (Lepidoptera: Noctuidae) em laboratório. Neotrop Entomol 33:155–161CrossRefGoogle Scholar
  5. Blanco CA, Portilla M, Abel CA, Winters H, Ford R, Streett D (2009) Soybean flour and wheat germ proportions in artificial diet and their effect on the growth rates of the tobacco budworm, Heliothis virescens. J Insect Sci 9:59CrossRefPubMedCentralGoogle Scholar
  6. Boregas KGB, Mendes SM, Waquil JM, Wilson G (2013) Estádio de adaptação de Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) em hospedeiros alternativos. Bragantia 72(1):61–70CrossRefGoogle Scholar
  7. Cohen AC (2004) Insect diets: science and technology. CRC Press, Boca RatonGoogle Scholar
  8. Colinvaux PA (1973) Introduction to ecology. John Wiley, New YorkGoogle Scholar
  9. Damiens D, Soliban SM, Balestrino F, Alsir R, Vreysen MJB, Gilles JRL (2013) Different blood and sugar feeding regimes affect the productivity of Anopheles arabiensis colonies (Diptera: Culicidae). J Med Entomol 50(2):336–343CrossRefPubMedGoogle Scholar
  10. Elden TC, Kenworthy WJ (1994) Foliar nutrient concentrations of insect susceptible and resistant soybean germplasm. Crop Prot 34:695–699Google Scholar
  11. Fox LR (1975) Cannibalism in natural populations. Annu Rev Ecol Syst 6:87–106CrossRefGoogle Scholar
  12. Gibbs M, Lace LA, Jones MJ, Moore AJ (2004) Intraspecific competition in the speckled wood butterfly: Pararge aegeria effect of rearing density and gender on larval life history. J Insect Sci 4:1–6CrossRefGoogle Scholar
  13. Greene GL, Leppla NC, Dickerson WA (1976) Velvetbean caterpillar: a rearing procedure and artificial medium. J Econ Entomol 69:487–488CrossRefGoogle Scholar
  14. Guerrero A, Malo EA, Coll J (2014) Semiochemical and natural product-based approaches to control Spodoptera spp. (Lepidoptera: Noctuidae). J Pestic Sci 87:231–247CrossRefGoogle Scholar
  15. Jallow MFA, Zalucki MP (2003) Relationship between oviposition preference and offspring performance in Australian Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Aust J Entomol 42:343–348CrossRefGoogle Scholar
  16. Kasten P Jr, Precetti ACM, Parra JRP (1978) Dados biológicos comparativos de Spodoptera frugiperda (J. E. Smith, 1797) em duas dietas artificiais e substrato natural. Rev Agric 53:68–78Google Scholar
  17. King EG, Hartley GG (1985) Diatraea saccharalis. In: Singh P, Moore RF (eds) Handbook of insect rearing. Elsevier, New York, pp 265–270Google Scholar
  18. Leuck DB, Perkins WD (1972) A method of estimating fall armyworm progeny reduction when evaluating control achieved by host-plant resistance. J Econ Entomol 65:482–483CrossRefGoogle Scholar
  19. Montezano DG, Specht A, Bortolin TM, Fronza E, Sosa-Gomez DR, Roque-Specht VF, Pezzi P, Luz CP, Barros NM (2013) Immature stages of Spodoptera albula (Walker) (Lepidoptera: Noctuidae): developmental parameters and host plants. An Acad Bras Cienc 85:271–284CrossRefPubMedGoogle Scholar
  20. Panizzi AR, Parra JRP (2012) Insect bioecology and nutrition for integrated pest management. CRC Press, Brasília, Brazil, Boca RatonCrossRefGoogle Scholar
  21. Parra JRP (2007) Técnicas de criação de insetos para programas de controle biológico. FEALQ, PiracicabaGoogle Scholar
  22. Pogue GM (2002) A world revision of the genus Spodoptera (Guenée) (Lepidoptera: Noctuidae). Mem Am Entomol Soc 43:1–202Google Scholar
  23. Roeder KA, Behmer ST (2014) Lifetime consequences of food protein-carbohydrate content for an insect herbivore. Funct Ecol 28:1135–1143CrossRefGoogle Scholar
  24. Salvadori JR, Parra JRP (1990) Seleção de dietas artificiais para Pseudaletia sequax (Lepidoptera: Noctuidae). Pesqu Agropecu Bras 25:1701–1713Google Scholar
  25. Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect-plant biology. CRC Press, Boca RatonGoogle Scholar
  26. Simpson SJ, Raubenheimer D (2001) The geometric analysis of nutrient-allelochemical interactions: a case of study using locusts. Ecology 82:422–439Google Scholar
  27. StatSoft. (2004) Statistica. Data analysis software system, version 7. StatSoftInc.,Tulsa, 2004. Available in: <www.statsoft.com>. Accessed: 12 sep. 2014
  28. Teixeira EP, Novo JPS, Stein CP, Godoy IJ (2001) Primeiro registro da ocorrência de Spodoptera albula (Walker) (Lepidoptera: Noctuidae) atacando amendoim (Arachis hypogaea, L.) no estado de São Paulo. Neotrop Entomol 30:723–724CrossRefGoogle Scholar
  29. Waldbauer GP, Cohen RW, Friedman S (1984) Self-selection of an optimal nutrient mix from defined diets by larvae of the corn earworm, Heliothis zea (Boddie). Physiol Zool 57:590–597CrossRefGoogle Scholar
  30. Wang YN, Zheng ZQ, Zhou YS (1984) Handbook of artificial diet of insect. Shanghai Scientific and Technical Publishers, ShanghaiGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2017

Authors and Affiliations

  • M M Di Bello
    • 1
    Email author
  • B H S Souza
    • 2
  • L Nogueira
    • 1
  • Z A Ribeiro
    • 1
  • W I Eduardo
    • 1
  • A L Boiça Júnior
    • 1
  1. 1.Depto de FitossanidadeFaculdade de Ciências Agrárias e Veterinárias – FCAV/UNESPJaboticabalBrasil
  2. 2.Depto de EntomologiaUniv Federal de LavrasLavrasBrasil

Personalised recommendations