Neotropical Entomology

, Volume 46, Issue 5, pp 514–523 | Cite as

DNA Barcoding of an Assembly of Montane Andean Butterflies (Satyrinae): Geographical Scale and Identification Performance

  • M A Marín
  • I C Cadavid
  • L Valdés
  • C F Álvarez
  • S I Uribe
  • R Vila
  • T W Pyrcz
Systematics, Morphology and Physiology


DNA barcoding is a technique used primarily for the documentation and identification of biological diversity based on mitochondrial DNA sequences. Butterflies have received particular attention in DNA barcoding studies, although varied performance may be obtained due to different scales of geographic sampling and speciation processes in various groups. The montane Andean Satyrinae constitutes a challenging study group for taxonomy. The group displays high richness, with more of 550 species, and remarkable morphological similarity among taxa, which renders their identification difficult. In the present study, we evaluated the effectiveness of DNA barcodes in the identification of montane Andean satyrines and the effect of increased geographical scale of sampling on identification performance. Mitochondrial sequences were obtained from 104 specimens of 39 species and 16 genera, collected in a forest remnant in the northwest Andes. DNA barcoding has proved to be a useful tool for the identification of the specimens, with a well-defined gap and producing clusters with unambiguous identifications for all the morphospecies in the study area. The expansion of the geographical scale with published data increased genetic distances within species and reduced those among species, but did not generally reduce the success of specimen identification. Only in Forsterinaria rustica (Butler, 1868), a taxon with high intraspecific variation, the barcode gap was lost and low support for monophyly was obtained. Likewise, expanded sampling resulted in a substantial increase in the intraspecific distance in Morpho sulkowskyi (Kollar, 1850); Panyapedaliodes drymaea (Hewitson, 1858); Lymanopoda obsoleta (Westwood, 1851); and Lymanopoda labda Hewitson, 1861; but for these species, the barcode gap was maintained. These divergent lineages are nonetheless worth a detailed study of external and genitalic morphology variation, as well as ecological features, in order to determine the potential existence of cryptic species. Even including these cases, DNA barcoding performance in specimen identification was 100% successful based on monophyly, an unexpected result in such a taxonomically complicated group.


Pronophilina Morpho Forsterinaria mitochondrial DNA molecular taxonomy andean cloud forest community ecology 



The authors would like to thank Noemy Seraphim, Leila Shirai, Rita Isabel Veléz, and the anonymous reviewers for critically reading the manuscript. This work was supported by the Corporación Universitaria Lasallista under grant [FCAA-07 2010] and Fundación BBVA (Proyecto MARIPOSA) [BIOCON08_021]. MAM acknowledges support of FAPESP (2014/16481-0) for the graduate fellowship and CFA does it to COLCIENCIAS (528/2011).

Supplementary material

13744_2016_481_MOESM1_ESM.pdf (87 kb)
Table S1 Details of the sequences obtained from GenBank to test the effect of increased geographical scale on barcode performance. (PDF 86 kb)
13744_2016_481_MOESM2_ESM.pdf (71 kb)
Table S2 Barcode sequences greater than 500 base pairs (bp) that were recovered from specimens from the study area. (PDF 71 kb)
13744_2016_481_MOESM3_ESM.xls (628 kb)
Table S3 Pairwise uncorrected p distances between the studied specimens. (XLS 628 kb)
13744_2016_481_MOESM4_ESM.pdf (65 kb)
Figure S1 NJ dendrogram based on uncorrected p distance, and ML tree (ln −15120.9727) with model GTR + G, with not collapsed branches. Obtained using the expanded geographic sampling matrix of 261 sequences from 112 species. (PDF 64 kb)


  1. Adams MJ (1986) Pronophiline butterflies (Satyridae) of the three Andean cordilleras of Colombia. Zool J Linnean Soc 87:235–320CrossRefGoogle Scholar
  2. Adams MJ (1985) Speciation in the pronophiline butterflies (Satyridae) of the northern Andes. J Res Lepid Supplement 1:33–49Google Scholar
  3. Ashfaq M, Akhtar S, Khan AM, Adamowicz SJ, Hebert PDN (2013) DNA barcode analysis of butterfly species from Pakistan points towards regional endemism. Mol Ecol Resour 13:832–843CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baselga A, Gómez-Rodríguez C, Vogler AP (2015) Multi-hierarchical macroecology at species and genetic levels to discern neutral and non-neutral processes. Glob Ecol Biogeogr 24:873–882CrossRefGoogle Scholar
  5. Bergsten J, Bilton DT, Fujisawa T, Elliott M, Monaghan MT, Balke M, Hendrich L, Geijer J, Herrmann J, Foster GN, Ribera I, Nilsson AN, Barraclough TG, Vogler AP (2012) The effect of geographical scale of sampling on DNA barcoding. Syst Biol 61:851–869CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bogdanowicz SM, Wallner WE, Bell TM, Harrison RG (1993) Asian gypsy moths (Lepidoptera: Lymantriidae) in North America: evidence from molecular data. Ann Entomol Soc Am 86:710–715CrossRefGoogle Scholar
  7. Boyle EE, Adamowicz SJ (2015) Community phylogenetics: assessing tree reconstruction methods and the utility of DNA barcodes. PLoS One 10(6):e0126662. doi: 10.1371/journal.pone.0126662 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brown SD, Collins RA, Boyer S, Lefort MC, Malumbres-Olarte J, Vink CJ, Cruickshank RH (2012) Spider: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Mol Ecol Resour 12:562–565CrossRefPubMedGoogle Scholar
  9. Casner KL, Pyrcz TW (2010) Patterns and timing of diversification in a tropical montane butterfly genus, Lymanopoda (Nymphalidae, Satyrinae). Ecography 33:251–259CrossRefGoogle Scholar
  10. Cassildé C, Blandin P, Silvain J-F (2012) Phylogeny of the genus Morpho Fabricius 1807: insights from two mitochondrial genes (Lepidoptera: Nymphalidae). Ann Soc Entomol Fr (N.S.) 48:173–188Google Scholar
  11. Collins RA, Boykin LM, Cruickshank RH, Armstrong KF (2012) Barcoding’s next top model: an evaluation of nucleotide substitution models for specimen identification. Methods Ecol Evol 3:457–465CrossRefGoogle Scholar
  12. Collins RA, Cruickshank RH (2013) The seven deadly sins of DNA barcoding. Mol Ecol Resour 13:969–975PubMedGoogle Scholar
  13. Cong Q, Grishin NV (2014) A new Hermeuptychia (Lepidoptera, Nymphalidae, Satyrinae) is sympatric and synchronic with H. sosybius in southeast US coastal plains, while another new Hermeuptychia species - not hermes - inhabits South Texas and Northeast Mexico. ZooKeys 91:43–91Google Scholar
  14. Corantioquia (2004) Programa integral de educación y comunicación a las comunidades de Angelópolis, Caldas y La Estrella, para la conservación y el manejo sostenible de los recursos naturales de la reserva forestal alto el romeral y la vía parque Angelópolis-Caldas. Fundación con Vida, Medellín, p 204Google Scholar
  15. Dasmahapatra KK, Elias M, Hill RI, Hoffman JI, Mallet J (2010) Mitochondrial DNA barcoding detects some species that are real, and some that are not. Mol Ecol Resour 10:264–273CrossRefPubMedGoogle Scholar
  16. Dincă V, Montagud S, Talavera G, Hernández-Roldán J, Munguira ML, García-Barros E, Hebert PD, Vila R (2015) DNA barcode reference library for Iberian butterflies enables a continental-scale preview of potential cryptic diversity. Sci Rep 5:12395. doi: 10.1038/srep12395 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dincă V, Zakharov EV, Hebert PDN, Vila R (2011) Complete DNA barcode reference library for a country’s butterfly fauna reveals high performance for temperate Europe. Proc Biol Sci 278:347–355CrossRefPubMedGoogle Scholar
  18. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  19. Elias M, Hill RI, Willmott KR, Dasmahapatra KK, Brower AV, Mallet J, Jiggins CD (2007) Limited performance of DNA barcoding in a diverse community of tropical butterflies. Proc Biol Sci 274:2881–2889CrossRefPubMedPubMedCentralGoogle Scholar
  20. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  21. Forster W (1964) Beiträge zur kenntnis der insektenfauna Boliviens XIX. Lepidoptera III Satyridae Veroffentlichungen der Zoologischen Staatssammlung München 8:51–188Google Scholar
  22. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci U S A 101:14812–14817CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hermelin M (2007) Valle de Aburrá: ¿Quo vadis? Gestión y Ambiente 10:7–16Google Scholar
  24. Holdridge LR (1967) Life zone ecology. Tropical Science Center, San José, p 206Google Scholar
  25. Huemer P, Mutanen M, Sefc KM, Hebert PDN (2014) Testing DNA barcode performance in 1000 species of European Lepidoptera: large geographic distances have small genetic impacts. PLoS One 9:e115774. doi: 10.1371/journal.pone.0115774 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Janzen DH, Hallwachs W, Blandin P, Burns JM, Cadiou JM, Chacon I, Dapkey T, Deans AR, Epstein ME, Espinoza B, Franclemont JG, Haber WA, Hajibabaei M, Hall JP, Hebert PD, Gauld ID, Harvey DJ, Hausmann A, Kitching IJ, Lafontaine D, Landry JF, Lemaire C, Miller JY, Miller JS, Miller L, Miller SE, Montero J, Munroe E, Green SR, Ratnasingham S, Rawlins JE, Robbins RK, Rodriguez JJ, Rougerie R, Sharkey MJ, Smith MA, Solis MA, Sullivan JB, Thiaucourt P, Wahl DB, Weller SJ, Whitfield JB, Willmott KR, Wood DM, Woodley NE, Wilson JJ (2009) Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity. Mol Ecol Resour 9:Suppl s1 1–26Google Scholar
  27. Joly S, Davies TJ, Archambault A, Bruneau A, Derry A, Kembel SW, Peres-Neto P, Vamosi J, Wheeler TA (2014) Ecology in the age of DNA barcoding: the resource, the promise and the challenges ahead. Mol Ecol Resour 14(2):221–232CrossRefPubMedGoogle Scholar
  28. Kress WJ, García-Robledo C, Uriarte M, Erickson DL (2015) DNA barcodes for ecology, evolution, and conservation. Trends Ecol Evol 30(1):25–35CrossRefPubMedGoogle Scholar
  29. Kress WJ, Erickson DL, Jones FA, Swenson NG, Perez R, Sanjur O, Bermingham E (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proc Natl Acad Sci U S A 106:18621–18626CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kreuzinger AJ, Fiedler K, Letsch H, Grill A (2015) Tracing the radiation of Maniola (Nymphalidae) butterflies: new insights from phylogeography hint at one single incompletely differentiated species complex. Ecol Evol 5:46–58CrossRefPubMedGoogle Scholar
  31. Lamas G, Viloria AL, Pyrcz TW (2004) Nymphalidae. Satyrinae. Tribe Satyrini. Subtribe Pronophilina. In: Heppner JB (ed), Checklist: Part 4A. Hesperioidea – Papilionoidea Atlas of the Neotropical Lepidoptera, Volume 5A. Scientific Publisher, Gainesville, pp 206–217Google Scholar
  32. Linares MC, Soto-Calderón ID, Lees DC, Anthony NM (2009) High mitochondrial diversity in geographically widespread butterflies of Madagascar: a test of the DNA barcoding approach. Mol Phylogenet Evol 50:485–495CrossRefPubMedGoogle Scholar
  33. Lukhtanov VA, Sourakov A, Zakharov EV, Hebert PDN (2009) DNA barcoding central Asian butterflies: increasing geographical dimension does not significantly reduce the success of species identification. Mol Ecol Resour 9:1302–1310CrossRefPubMedGoogle Scholar
  34. Marín MA, Giraldo CE, Marín AL, Álvarez CF, Pyrcz TW (2015) Differences in butterfly (Nymphalidae) diversity between hillsides and hilltop forest patches in the northern Andes. Stud. Neotrop Fauna Environ 50:194–203CrossRefGoogle Scholar
  35. Meier R, Shiyang K, Vaidya G, Ng PKL (2006) DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst Biol 55:715–728CrossRefPubMedGoogle Scholar
  36. Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3(12):e422. doi: 10.1371/journal.pbio.0030422 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Moritz C, Cicero C (2004) DNA barcoding: promise and pitfalls. PLoS Biol 2:e354. doi: 10.1371/journal.pbio.0020354 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Nattier R, Capdevielle-Dulac C, Cassildé C, Couloux A, Cruaud C, Lachaume G, Lamas G, Silvain J-F, Blandin P (2016) Phylogeny and diversification of the cloud forest Morpho sulkowskyi group (Lepidoptera, Nymphalidae) in the evolving Andes. Zool Scr:1–14. doi: 10.1111/zsc.12226
  39. Papadopoulou A, Bergsten J, Fujisawa T, Monaghan MT, Barraclough TG, Vogler AP (2008) Speciation and DNA barcodes: testing the effects of dispersal on the formation of discrete sequence clusters. Philos Trans R Soc Lond Ser B Biol Sci 363:2987–2996CrossRefGoogle Scholar
  40. Peña C, Malm T (2012) VoSeq: a voucher and DNA sequence web application. PLoS One 7(6):e39071. doi: 10.1371/journal.pone.0039071 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Prado BR, Pozo C, Valdez-Moreno M, Hebert PDN (2011) Beyond the colours: discovering hidden diversity in the Nymphalidae of the Yucatan peninsula in Mexico through DNA barcoding. PLoS One 6(11):e27776. doi: 10.1371/journal.pone.0027776 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Pyrcz TW (2004) Pronophiline butterflies of the highlands of Chachapoyas in northern Peru: faunal survey, diversity and distribution patterns (Lepidoptera, Nymphalidae, Satyrinae). Genus 15(4):455–622Google Scholar
  43. Pyrcz TW, Garlacz R (2012) The presence–absence situation and its impact on the assemblage structure and interspecific relations of Pronophilina butterflies in the Venezuelan Andes (Lepidoptera: Nymphalidae). Neotrop Entomol 41:186–195CrossRefPubMedPubMedCentralGoogle Scholar
  44. Pyrcz TW, Rodríguez G (2007) Mariposas de la tribu Pronophilini en la Cordillera Occidental de los Andes de Colombia (Lepidoptera: Nymphalidae, Satyrinae). SHILAP Soc Hispano Luso Am Lepid 35:455–489Google Scholar
  45. Pyrcz TW, Wojtusiak J (2002) The vertical distribution of pronophiline butterflies (Nymphalidae, Satyrinae) along an elevational transect in Monte Zerpa (Cordillera de Mérida, Venezuela) with remarks on their diversity and parapatric distribution. Glob Ecol Biogeogr 11:211–221CrossRefGoogle Scholar
  46. Pyrcz TW, Clavijo A, Uribe S, Marín MA, Álvarez, CF, Zubek A (2016) Páramo de Belmira as an important centre of endemism in the northern Colombian Andes: new evidence from Pronophilina butterflies (Lepidoptera: Nymphalidae, Satyrinae, Satyrini). Zootaxa in pressGoogle Scholar
  47. Pyrcz TW, Wojtusiak J, Garlacz R (2009) Diversity and distribution patterns of Pronophilina butterflies (Lepidoptera: Nymphalidae: Satyrinae) along an altitudinal transect in North-Western Ecuador. Neotrop Entomol 38:716–726CrossRefPubMedGoogle Scholar
  48. Pyrcz TW, Prieto C, Viloria ÁL, Andrade-C G (2013) New species of high elevation cloud forest butterflies of the genus Pedaliodes Butler from the northern Colombian Andes (Lepidoptera, Nymphalidae, Satyrinae). Zootaxa 3716(4):528–538CrossRefPubMedGoogle Scholar
  49. Pyrcz TW, Willmott KR, Hall JPW, Viloria ÁL (2006) A review of the genus Manerebia Staudigner (Lepidoptera: Nymphalida: Satyrinae) in the northern Andes. J Res Lepid 39:37–79Google Scholar
  50. Rosero DA, Gutiérrez LA, Cienfuegos AV, Jaramillo LM, Correa MM (2010) Optimización de un procedimiento de extracción de ADN para mosquitos anofelinos. Rev Colomb Entomol 36:260–263Google Scholar
  51. Seraphim N, Marín MA, Freitas AVL, Silva-Brandão KL (2014) Morphological and molecular marker contributions to disentangling the cryptic Hermeuptychia hermes species complex (Nymphalidae: Satyrinae: Euptychiina). Mol Ecol Resour 14:39–49CrossRefPubMedGoogle Scholar
  52. Silva-Brandão KL, Lyra ML, Freitas AVL (2009) Barcoding Lepidoptera: current situation and perspectives on the usefulness of a contentious technique. Neotrop Entomol 38:441–451CrossRefPubMedGoogle Scholar
  53. Srivathsana A, Meiera R (2012) On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature. Cladistics 28:190–194CrossRefGoogle Scholar
  54. Talavera G, Lukhtanov VA, Rieppel L, Pierce NE, Vila R (2013) In the shadow of phylogenetic uncertainty: the recent diversification of the Lysandra butterflies through chromosomal changes. Mol Phylogenet Evol 69:469–478CrossRefPubMedGoogle Scholar
  55. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  56. Valentini A, Pompanon F, Taberlet P (2009) DNA barcoding for ecologists. Trends Ecol Evol 24(2):110–117CrossRefPubMedGoogle Scholar
  57. Viloria AL (2003) Historical biogeography and the origins of the satyrine butterflies of the tropical Andes (Lepidoptera: Rhopalocera). In: Morrone JJ, Llorente J (eds) Una perspectiva latinoamericana de la biogeografía. Universidad Nacional Autónoma de México, México, pp 247–261Google Scholar
  58. Viloria A, Pyrcz T, Orellana A (2010) A survey of the Neotropical montane butterflies of the subtribe Pronophilina (Lepidoptera, Nymphalidae) in the Venezuelan cordillera de la costa. Zootaxa 41:1–41Google Scholar
  59. Vodă R, Dapporto L, Dincă V, Shreeve TG, Khaldi M, Barech G, Rebbas K, Sammut P, Scalercio S, Hebert PDN, Vila R (2016) Historical and contemporary factors generate unique butterfly communities on islands. Scientific Reports 6:28828. doi: 10.1038/srep28828 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wiemers M, Fiedler K (2007) Does the DNA barcoding gap exist?—a case study in blue butterflies (Lepidoptera: Lycaenidae). Front Zool 4:8. doi: 10.1186/1742-9994-4-8 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wilson J-J, Sing K-W, Sofian-Azirun M (2013) Building a DNA barcode reference library for the true butterflies (Lepidoptera) of peninsula Malaysia: what about the subspecies? PLoS One 8:e79969. doi: 10.1371/journal.pone.0079969 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Yang M, Zhai Q, Yang Z, Zhang Y (2015) DNA barcoding satyrine butterflies (Lepidoptera: Nymphalidae) in China. Mitochondrial DNA 27(4):2523–2528PubMedGoogle Scholar
  63. Zhang A-B, Muster C, Liang H-B, Zhu C-D, Crozier R, Wan P, Feng J, Ward RD (2012) A fuzzy-set-theory-based approach to analyse species membership in DNA barcoding. Mol Ecol 21:1848–1863CrossRefPubMedGoogle Scholar
  64. Zubek A, Pyrcz TW (2011) The synonymy of Forsterinaria difficilis ( Forster ) and F. Anachoreta Pulido & Andrade (Lepidoptera: Nymphalidae: Satyrinae). Caldasia 22(2):217–225Google Scholar
  65. Zubek A, Pyrcz TW, Boyer P (2014) Description of a new species of the Andean butterfly genus Forsterinaria gray (Lepidoptera: Nymphalidae) with considerations on an apparently new structure in male genitalia. Neotrop Entomol 43:68–77CrossRefPubMedGoogle Scholar
  66. Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. thesis, The University of Texas at Austin, Austin, EUA, p 115Google Scholar

Copyright information

© Sociedade Entomológica do Brasil 2017

Authors and Affiliations

  1. 1.Depto de Biologia Animal, Instituto de BiologiaUniv Estadual de Campinas – UNICAMPCampinasBrazil
  2. 2.Univ Nacional de Colombia, Sede Medellín, Grupo de Investigación en Sistemática MolecularMedellínColombia
  3. 3.Corporación Universitaria LasallistaAntioquiaColombia
  4. 4.Instituto de Biología Evolutiva (CSIC-UPF)BarcelonaSpain
  5. 5.Zoological MuseumJagiellonian UnivKrakówPoland

Personalised recommendations