Neotropical Entomology

, Volume 46, Issue 2, pp 151–158 | Cite as

Environment and Spatial Influences on Aquatic Insect Communities in Cerrado Streams: the Relative Importance of Conductivity, Altitude, and Conservation Areas

  • B S GodoyEmail author
  • L L Queiroz
  • S Lodi
  • L G Oliveira
Ecology, Behavior and Bionomics


The aquatic insect community is an important element for stream functionality and diversity, but the effects of altitude and conservation areas on the aquatic insect community have been poorly explored in neotropical ecozone. The lack of studies about the relative importance of space and environment on community structure is another obstacle within aquatic insect ecology, which precludes the inclusion of these studies in more current frameworks, like the metacommunity dynamics. We evaluated the relationship between the aquatic insect community structure at 19 streams in the Brazilian Cerrado and spatial and environmental variables, namely geographical distance among sites, stream altitude, chemical variables, and environmental protection areas. We partitioned the variance explained by spatial and environmental components using a partial redundancy analysis. The environment exhibited a strong spatial structure for abundance and number of genera, increasing these community parameters with elevated water conductivity. Only community composition had a large unexplained portion of variance, with a small portion constrained by environmental (altitude and conductivity) and spatial factors. A relevant point in the result was the streams with high conductivity were located outside of the conservation areas. These results suggest that the relationship between number of genera and abundance with environmental conditions is always associated with spatial configuration of streams. Our study shows that altitude is an important determinant of community structure, as it exerts indirect influences, and electrical conductivity directly determines community composition, and that some national parks may be inefficient in maintaining the diversity of aquatic insects in the Cerrado region.


Aquatic insects turnover altitude limnology spatial ecology conservation areas 



We want to thank Tadeu Siqueira and Juliana Simião Ferreira for the great contribution in reviewing the manuscript and for the constructive comments. We also thank Ministério do Meio Ambiente (MMA), Instituto Brasileiro do Meio Ambiente (IBAMA), for granting the license (number: 19999–1) to sample at the Chapada dos Veadeiros National Park (CVNP) and all the park staff for the support in logistics. This study was supported by research grants from CNPq (process 475355/2007-5) and UFPA (process 01/2014 - PROPESP/FADESP).

Supplementary material

13744_2016_452_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1190 kb)
13744_2016_452_MOESM2_ESM.docx (140 kb)
ESM 2 (DOCX 140 kb)


  1. Abdo ASS, Md Rawi CS, Ahmad AH, Rosmahanie Madrus M (2013) Biodiversity of stream insects in the Malaysian Peninsula: spatial patterns and environmental constraints. Ecol Entomol 38:238–249. doi: 10.1111/een.12013 CrossRefGoogle Scholar
  2. Allan JD, Castillo MM (2007) Stream ecology. Springer Netherlands, DordrechtCrossRefGoogle Scholar
  3. Astorga A, Oksanen J, Luoto M et al (2012) Distance decay of similarity in freshwater communities: do macro- and microorganisms follow the same rules? Glob Ecol Biogeogr 21:365–375. doi: 10.1111/j.1466-8238.2011.00681.x CrossRefGoogle Scholar
  4. Baptista DF, Buss DF, Egler M et al (2007) A multimetric index based on benthic macroinvertebrates for evaluation of Atlantic Forest streams at Rio de Janeiro State, Brazil. Hydrobiologia 575:83–94. doi: 10.1007/s10750-006-0286-x CrossRefGoogle Scholar
  5. Baselga A (2008) Determinants of species richness, endemism and turnover in European longhorn beetles. Ecography (Cop) 080221043923263. doi:  10.1111/j.2007.0906-7590.05335.x
  6. Baselga A, Jiménez-Valverde A, Niccolini G (2007) A multiple-site similarity measure independent of richness. Biol Lett 3:642–645. doi: 10.1098/rsbl.2007.0449 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bispo PC, Oliveira LG (2007) Diversity and structure of Ephemeroptera, Plecoptera and Trichoptera (Insecta) assemblages from riffles in mountain streams of Central Brazil. Rev Bras Zool 24:283–293. doi: 10.1590/S0101-81752007000200004 CrossRefGoogle Scholar
  8. Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632. doi: 10.1890/07-0986.1 CrossRefPubMedGoogle Scholar
  9. Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Modell 153:51–68. doi: 10.1016/S0304-3800(01)00501-4 CrossRefGoogle Scholar
  10. Chiasson A (2009) Bootstrapping to investigate the effect of number of macroinvertebrate samples on confidence limits of the mean. Environ Monit Assess 149:53–59CrossRefPubMedGoogle Scholar
  11. De Bie T, De Meester L, Brendonck L et al (2012) Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol Lett 15:740–7. doi: 10.1111/j.1461-0248.2012.01794.x CrossRefPubMedGoogle Scholar
  12. R Development Core Team (2014) R: a language and environment for statistical computingGoogle Scholar
  13. Dudgeon D, Arthington AH, Gessner MO et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc 81:163–182. doi: 10.1017/S1464793105006950 CrossRefPubMedGoogle Scholar
  14. Faith DP, Minchin PR, Belbin L (1987) Compositional dissimilarity as a robust measure of ecogical distance. Vegetatio 69:57–68CrossRefGoogle Scholar
  15. Froehlich CG (1984) Brazilian Plecoptera 4. Nymphs of perlid genera from south-eastern Brazil. Ann Limnol 20:43–47CrossRefGoogle Scholar
  16. Grönroos M, Heino J, Siqueira T et al (2013) Metacommunity structuring in stream networks: roles of dispersal mode, distance type, and regional environmental context. Ecol Evol 3:4473–4487. doi: 10.1002/ece3.834 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Heino J (2011) A macroecological perspective of diversity patterns in the freshwater realm. Freshw Biol 56:1703–1722. doi: 10.1111/j.1365-2427.2011.02610.x CrossRefGoogle Scholar
  18. Heino J (2013) The importance of metacommunity ecology for environmental assessment research in the freshwater realm. Biol Rev 88:166–178. doi: 10.1111/j.1469-185X.2012.00244.x CrossRefPubMedGoogle Scholar
  19. Heino J, Melo AS, Siqueira T et al (2015a) Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw Biol 60:845–869. doi: 10.1111/fwb.12533 CrossRefGoogle Scholar
  20. Heino J, Melo AS, Bini LM et al (2015b) A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels. Ecol Evol 5:1235–1248. doi: 10.1002/ece3.1439 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Huamantinco AA, Nessimian JL (1999) Estrutura e distribuição espacial da comunidade de larvas de Trichoptra (Insecta) em um tributário de primeira ordem do rio Paquequer, Teresópolis, RJ. Acta Limnol Bras 11:1–16Google Scholar
  22. ICMBio (2015) Parna da Chapada dos VeadeirosGoogle Scholar
  23. Jacobsen D, Brodersen KP (2008) Are altitudinal limits of equatorial stream insects reflected in their respiratory performance? Freshw Biol 53:2295–2308. doi: 10.1111/j.1365-2427.2008.02050.x Google Scholar
  24. Jacobsen D, Schultz R, Encalada A (1997) Structure and diversity of stream invertebrate assemblages: the influence of temperature with altitude and latitude. Freshw Biol 38:247–261. doi: 10.1046/j.1365-2427.1997.00210.x CrossRefGoogle Scholar
  25. Junk WJ, Piedade MTF, Lourival R et al (2014) Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat Conserv Mar Freshw Ecosyst 24:5–22. doi: 10.1002/aqc.2386 CrossRefGoogle Scholar
  26. Landeiro VL, Bini LM, Melo AS et al (2012) The roles of dispersal limitation and environmental conditions in controlling caddisfly (Trichoptera) assemblages. Freshw Biol 57:1554–1564. doi: 10.1111/j.1365-2427.2012.02816.x CrossRefGoogle Scholar
  27. Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659. doi: 10.2307/1939924 CrossRefGoogle Scholar
  28. Legendre P, Legendre LFJ (2012) Numerical ecology, 24th edn. Elsevier, AmsterdamGoogle Scholar
  29. Leibold MA, Holyoak M, Mouquet N et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613CrossRefGoogle Scholar
  30. Logue JB, Mouquet N, Peter H, Hillebrand H (2011) Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol Evol 26:482–491CrossRefPubMedGoogle Scholar
  31. Merritt RW, Cummins KW, Berg MB (2008) An introduction to the aquatic insects of North America, 4th edn. Kendall/Hunt Publishing Company, DubuqueGoogle Scholar
  32. Mykrä H, Heino J, Muotka T (2007) Scale-related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. Glob Ecol Biogeogr 16:149–159. doi: 10.1111/j.1466-8238.2006.00272.x CrossRefGoogle Scholar
  33. Peeters ETHM, Gylstra R, Vos JH (2004) Benthic macroinvertebrate community structure in relation to food and environmental variables. Hydrobiologia 519:103–115. doi: 10.1023/B:HYDR.0000026497.48827.70 CrossRefGoogle Scholar
  34. Qian H, Ricklefs RE, White PS (2004) Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol Lett 8:15–22. doi: 10.1111/j.1461-0248.2004.00682.x CrossRefGoogle Scholar
  35. Resh VH (2008) Which group is best? Attributes of different biological assemblages used in freshwater biomonitoring programs. Environ Monit Assess 138:131–8. doi: 10.1007/s10661-007-9749-4 CrossRefPubMedGoogle Scholar
  36. Rosenberg D, Resh VH (1993) Freshwater biomonitoring and benthic macroinvertebrates, 1st edn. Chapman & Hall, LondonGoogle Scholar
  37. Salles F, Da-Silva E, Serrão J, Francischetti C (2004) Baetidae (Ephemeroptera) na Região Sudeste do Brasil: novos registros e chave para os gêneros no estágio ninfal. Neotrop Entomol 33:725–735CrossRefGoogle Scholar
  38. Siqueira T, Bini LM, Roque FO, Cottenie K (2012) A metacommunity framework for enhancing the effectiveness of biological monitoring strategies. PLoS ONE. doi: 10.1371/journal.pone.0043626 Google Scholar
  39. Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment, and floristic variation of western Amazonian forests. Science 299:241–244. doi: 10.1126/science.1078037 CrossRefPubMedGoogle Scholar
  40. Wang J, Soininen J, Zhang Y et al (2012) Patterns of elevational beta diversity in micro- and macroorganisms. Glob Ecol Biogeogr 21:743–750. doi: 10.1111/j.1466-8238.2011.00718.x CrossRefGoogle Scholar
  41. Whittaker R (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monogr 30:279–338CrossRefGoogle Scholar
  42. Wiggins GB (1977) Larvae of the North American caddisfly genera (Trichoptera). University of Toronto PressGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2016

Authors and Affiliations

  • B S Godoy
    • 1
    Email author
  • L L Queiroz
    • 2
  • S Lodi
    • 3
  • L G Oliveira
    • 4
  1. 1.Núcleo de Ciências Agrárias e Desenvolvimento RuralUniv Federal do ParáBelémBrasil
  2. 2.Núcleo de Ecologia de Insetos, HexapodaGoiâniaBrasil
  3. 3.Depto de EcologiaUniv Federal de ParáBelémBrasil
  4. 4.Depto de EcologiaUniv Federal de GoiásGoiâniaBrasil

Personalised recommendations