Advertisement

Neotropical Entomology

, Volume 44, Issue 5, pp 430–438 | Cite as

Oviposition Site Selection Structures Niche Partitioning Among Coccinellid Species in a Tropical Ecosystem

  • P R Sicsú
  • R H Macedo
  • E R SujiiEmail author
Ecology, Behavior and Bionomics

Abstract

The competitive exclusion hypothesis suggests that coexisting related species using similar resources in nature should partition their realized niches. This hypothesis has direct implications for conservation strategies using biological control, taking into consideration the shifts caused by the introduction of natural enemies in a local community. Such introductions typically lead to disruptions in species interactions and interfere with community structure. In this study, we asked whether community structure of aphidophagous lady beetles is determined by the distribution of specific plants and aphids. To answer this question, we describe the distribution patterns of lady beetles (adults, larvae, and egg clusters) relative to plants and aphids in eight crop ecosystems in a central region of Brazil. We used canonical correspondence analysis to evaluate lady beetle distribution relative to selected habitat variables. Cycloneda sanguinea L., Hippodamia convergens Guérin-Méneville, Harmonia axyridis Pallas, and Eriopis connexa Germar (Coleoptera: Coccinellidae) differed in their use of plants and aphids. The association of egg clusters with specific plants/aphids was stronger than that of larvae or adults. In conclusion, lady beetle species occupied different niches, indicating different patterns of habitat use that may facilitate their coexistence in crop ecosystems. Furthermore, immature individuals had more specific environmental associations than adults, likely because female choice of oviposition sites influences their distribution and thus lady beetle community structure.

Keywords

Aphidophagous lady beetles community structure habitat selection maternal behavior niche 

Notes

Acknowledgments

We thank Bruno Luiz Rocha de Oliveira, Lucas Machado, Amanda Aurélio, Caroline Muniz, Pedro Ribeiro, Yuri Prestes, and the EMBRAPA lab crew for critical field and lab assistance. We also appreciate the help with aphid identification provided by Dr. Claúdio Lúcio Costa, emeritus professor of the University of Brasilia, and the great assistance with statistical analyses provided by Joseane Padilha da Silva, Marcos R. Lima, and Frederico Takahashi. We are grateful to Raphael I. Dias, Glauco Machado, Raul Laumann, and three anonymous reviewers for wonderful improvements suggested on a previous version of the manuscript. This study was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq. Logistic support was provided by Embrapa Recursos Energéticos e Biotecnologia and Universidade de Brasília. The study was conducted in accordance with the current laws of Brazil, and the authors do not have any conflict of interest relative to the financial support provided by the institutions listed.

References

  1. Altieri M (2012) Agroecologia: bases científicas para uma agricultura sustentável. Expressão Popular/AS-PTA, Rio de Janeiro, p 400Google Scholar
  2. Begon M, Mortimer M (1996) Population ecology: a unified study of animals and plants. Blackwell, Boston, p 1068CrossRefGoogle Scholar
  3. Caballero-López B, Bommarco R, Blanco-Moreno JM, Sans FX, Pujade-Villar J, Rundlöf M, Smith HG (2012) Aphids and their natural enemies are differently affected by habitat features at local and landscape scales. Biol Control 63:222–229. doi: 10.1016/j.biocontrol.2012.03.012 CrossRefGoogle Scholar
  4. Ceryngier P, Roy HE, Poland RL (2012) Natural enemies of ladybird beetles. In: Hodek I, van Emden HF, Honěk A (eds) Ecology and behaviour of the ladybird beetles (Coccinellidae), 1st edn. Blackwell, Chichester, pp 375–443CrossRefGoogle Scholar
  5. Cottrell TE, Yeargan KV (1998) Intraguild predation between an introduced lady beetle, Harmonia axyridis (Coleoptera: Coccinellidae), and a native lady beetle, Coleomegilla maculata (Coleoptera: Coccinellidae). J Kansas Entomol Soc 71:159–163Google Scholar
  6. Craig TP, Itami JK, Price PW (1989) A strong relationship between oviposition preference and larval performance in a shoot-galling sawfly. Ecology 70:1691–1699. doi: 10.2307/1938103 CrossRefGoogle Scholar
  7. Darwin C (1859) On the origin of species by means of natural selection. Murray, LondonGoogle Scholar
  8. Denmark HA (1990) A field key to the Citrus aphids in Florida (Homoptera: Aphididae). Florida Department of Agriculture & Consumer Service—Division of Plant Industry. Entomol Circ 335:1–2Google Scholar
  9. Donoghue MJ (2008) A phylogenetic perspective on the distribution of plant diversity. Proc Natl Acad Sci 105:11549–11555. doi: 10.1073/pnas.0801962105 PubMedCentralCrossRefPubMedGoogle Scholar
  10. Ellis AM (2008) Linking movement and oviposition behaviour to spatial population distribution in the tree hole mosquito Ochlerotatus triseriatus. J Anim Ecol 771:156–166. doi: 10.1111/j.1365-2656.2007.01319.x CrossRefGoogle Scholar
  11. Evans EW (2003) Searching and reproductive behaviour of female aphidophagous ladybirds (Coleoptera: Coccinellidae): a review. Eur J Entomol 100:1–10. doi: 10.14411/eje.2003.001 CrossRefGoogle Scholar
  12. Evans EW (2009) Lady beetles as predators of insects other than Hemiptera. Biol Control 51:255–267. doi: 10.1016/j.biocontrol.2009.05.011 CrossRefGoogle Scholar
  13. Evans EW, Dixon AFG (1986) Cues for oviposition by ladybird beetles (Coccinellidae): response to aphids. J Anim Ecol 55:1027–1034. doi: 10.2307/4431 CrossRefGoogle Scholar
  14. Evans EW, Stevenson AT, Richards DR (1999) Essential versus alternative foods of insect predators: benefits of a mixed diet. Oecologia 121:107–112. doi: 10.1007/s004420050911 CrossRefGoogle Scholar
  15. Ferran A, Dixon AFG (1993) Foraging behavior of ladybird larvae (Coleoptera: Coccinellidae). Eur J Entomol 90:383–402Google Scholar
  16. Finke DL, Snyder WE (2008) Niche partitioning increases resource exploitation by diverse communities. Science 321:1488–1490. doi: 10.1126/science.1160854 CrossRefPubMedGoogle Scholar
  17. Fox LR (1975) Cannibalism in natural populations. Annu Rev Ecol Syst 6:87–106. doi: 10.1146/annurev.es.06.110175.000511 CrossRefGoogle Scholar
  18. Giorgi AJ, Forrester JA, Vandenberg NJ, Whiting MF, Mchugh JV, Miller KB, Shapiro LR (2009) The evolution of food preferences in Coccinellidae. Biol Control 51:215–231. doi: 10.1016/j.biocontrol.2009.05.019 CrossRefGoogle Scholar
  19. Hagen KS (1962) Biology and ecology of predaceous Coccinellidae. Annu Rev Entomol 7:289–326. doi: 10.1146/annurev.en.07.010162.001445 CrossRefGoogle Scholar
  20. Hardin G (1960) The competitive exclusion principle. Science 131:1292–1297. doi: 10.1126/science.134.3490.1599 CrossRefPubMedGoogle Scholar
  21. Harrell FE, Dupont C (2012) Hmisc: Harrell Miscellaneous. R Package Version 3:10–11Google Scholar
  22. Harvey H, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford, p 248Google Scholar
  23. Hassell M, Southwood TRE (1978) Foraging strategies of insects. Annu Rev Ecol Syst 9:75–98. doi: 10.1146/annurev.es.09.110178.000451 CrossRefGoogle Scholar
  24. Hemptinne JL, Dixon AFG (1991) Why ladybirds have generally been so ineffective in biological control? In: Polgár L, Chambers RJ, Dixon AFG, Hodek I (eds) Behaviour and impact of Aphidophaga. SPB Academic, The Hague, pp 149–157Google Scholar
  25. Hodek I, van Emden HF, Honěk A (2012) Ecology and behaviour of the ladybird beetles (Coccinellidae). Blackwell, Chichester, p 561CrossRefGoogle Scholar
  26. Honěk A (2012) Distribution and habitats. In: Hodek I, van Emden HF, Honěk A (eds) Ecology and behaviour of the ladybird beetles (Coccinellidae), 1st edn. Blackwell, Chichester, pp 110–140CrossRefGoogle Scholar
  27. Horn DJ (1981) Effect of weedy backgrounds on colonization of collards by green peach aphid, Myzus persicae, and its major predators. Evinron Entomol 10:285–289CrossRefGoogle Scholar
  28. Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:15–427CrossRefGoogle Scholar
  29. Hutchinson GE (1959) Homage to Santa Rosalia, or why are there so many kinds of animals? Am Nat 93:145–159CrossRefGoogle Scholar
  30. Janssen A, Sabelis MW, Magalhaes S, Montserrat M, van der Hammen T (2007) Habitat structure affects intraguild predation. Ecology 88:2713–2719. doi: 10.1890/06-1408.1 CrossRefPubMedGoogle Scholar
  31. Kajita Y, Yasuda H, Evans EW (2006) Effects of native ladybirds on oviposition of the exotic species, Adalia bipunctata (Coleoptera: Coccinellidae). Jpn Appl Entomol Zool 41:57–61. doi: 10.1303/aez.2006.57 CrossRefGoogle Scholar
  32. Kindlmann P, Dixon AFG (1993) Optimal foraging in ladybird beetles (Coleoptera: Coccinellidae) and its consequences for their use in biological control. Eur J Entomol 90:443–450Google Scholar
  33. Kindlmann P, Houdková K (2006) Intraguild predation: fiction or reality? Popul Ecol 48:317–322. doi: 10.1007/s10144-006-0006-4 CrossRefGoogle Scholar
  34. Klink A, Machado RB (2005) The conservation of the Brazilian Cerrado. Conserv Biol 19:707–713. doi: 10.1111/j.1523-1739.22.x CrossRefGoogle Scholar
  35. Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science B.V, Amsterdam, p 775Google Scholar
  36. Letourneau DK, Armbrecht I, Rivera BS, Lerma JM, Carmona EJ, Daza MC, Escobar S, Galindo V, Gutiérrez C, López SD, Mejía JL, Rangel AMA, Rangel JH, Rivera L, Saavedra CA, Torres AM, Trujillo AR (2011) Does plant diversity benefit agroecosystems? A synthetic review. Ecol Appl 21:9–21. doi: 10.1890/09-2026.1 CrossRefPubMedGoogle Scholar
  37. Liere H, Perfecto I, Vandermee J (2014) Stage-dependent responses to emergent habitat heterogeneity: consequences for a predatory insect population in a coffee agroecosystem. Ecol Evol 416:3201–3209. doi: 10.1002/ece3.1161 CrossRefGoogle Scholar
  38. Liu T, Sparks ANJ (2001) Aphids on cruciferous crops: identification and management. Tex Agric Ext Serv B-6109:1–11Google Scholar
  39. Lucas E (2005) Intraguild predation among aphidophagous predators. Eur J Entomol 102:351–364CrossRefGoogle Scholar
  40. Lucas E, Coderre D, Brodeur J (2000) Selection of molting and pupation sites by Coleomegilla maculata (Coleoptera: Coccinellidae): avoidance of intraguild predation. Environ Entomol 29:454–459. doi: 10.1603/0046-225X-29.3.454 CrossRefGoogle Scholar
  41. Machado G, Oliveira S (2002) Maternal care in the neotropical harvestman Bourguyia albiornata (Arachnida: Opiliones): oviposition site selection and egg protection. Behaviour 139:1509–1524. doi: 10.1163/15685390260514744 CrossRefGoogle Scholar
  42. Michaud JP (2000) Development and reproduction of ladybeetles (Coleoptera: Coccinellidae) on the citrus aphids Aphis spiraecola Patch and Toxoptera citricida (Kirkaldy) (Homoptera: Aphididae). Biol Control 18:287–297. doi: 10.1006/bcon.2000.0833 CrossRefGoogle Scholar
  43. Michaud JP, Jyoti (2007) Repellency of conspecific and heterospecific larval residues to Hippodamia convergens (Coleoptera: Coccinellidae) oviposition on sorghum plants. Eur J Entomol 104:399–405CrossRefGoogle Scholar
  44. Minkenberg OJM, Tatar M, Rosenheim JA (1992) Egg load as a major source of variability in insect foraging and oviposition behavior. Oikos 65:134–142CrossRefGoogle Scholar
  45. Morris DW (2003) Toward an ecological synthesis: a case for habitat selection. Oecologia 136:1–13. doi: 10.1007/s00442-003-1241-4 CrossRefPubMedGoogle Scholar
  46. Obrycki JJ, Kring TJ (1998) Predaceous Coccinellidae in biological control. Annu Rev Entomol 43:295–321CrossRefPubMedGoogle Scholar
  47. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara R B, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) vegan: Community Ecology Package. R package version 2.0-5 http://CRAN.R-project.org/package=vegan Accessed 21 Jan 2014
  48. Osawa N (1993) Population field studies of the aphidophagous ladybird beetle Harmonia axyridis (Coleoptera: Coccinellidae): life tables and key factor analysis. Res Popul Ecol 35:335–348CrossRefGoogle Scholar
  49. Osawa N (2011) Ecology of Harmonia axyridis in natural habitats within its native range. BioControl 56:613–621. doi: 10.1007/s10526-011-9382-6 CrossRefGoogle Scholar
  50. Pell JK, Baverstoc J, Roy HE, Ware RL, Majerus MEN (2008) Intraguild predation involving Harmonia axyridis: a review of current knowledge and future perspectives. BioControl 53:147–168. doi: 10.1007/978-1-4020-6939-0_10 CrossRefGoogle Scholar
  51. Pemberton RW, Vandenberg NJ (1993) Extrafloral nectar feeding by ladybird beetles (Coleoptera: Coccinellidae). Proc Entomol Soc Wash 95:139–151Google Scholar
  52. Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu Rev Ecol Syst 20:297–330. doi: 10.1146/annurev.es.20.110189.001501 CrossRefGoogle Scholar
  53. Powell G, Tosh CR, Hardie J (2006) Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annu Rev Entomol 51:309–330. doi: 10.1146/annurev.ento.51.110104.151107 CrossRefPubMedGoogle Scholar
  54. R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, http://www.R-project.org Accessed 19 Nov 2013
  55. Rees BE, Anderson DM, Bouk D, Gordon RD (1994) Larval key to genera and selected species of North American Coccinellidae (Coleoptera). Proc Entomol Soc Wash 96:387–412Google Scholar
  56. Resitarits WJ (1996) Oviposition site choice and life history evolution. Am Zool 36:205–215Google Scholar
  57. Rhoades MH (1996) Key to first and second instars of six species of Coccinellidae (Coleoptera) from alfalfa in southwest Virginia. J New York Entomol Soc 104:83–88Google Scholar
  58. Ricklefs RE (2003) A economia da natureza. Guanabara Koogan, Rio de Janeiro, p 470Google Scholar
  59. Riddick EW, Cottrell TE, Kidd KA (2009) Natural enemies of the Coccinellidae: parasites, pathogens, and parasitoids. Biol Control 51:306–312. doi: 10.1016/j.biocontrol.2009.05.008 CrossRefGoogle Scholar
  60. Schellhorn NA, Andow DA (1999) Cannibalism and interspecific predation: role of oviposition behavior. Ecol Appl 9:418–428. doi: 10.1890/1051-0761 Google Scholar
  61. Schmidt A (1992) Untersuchungen zur Attraktivität von Ackerwildkräuter für aphidophage Marienkäfer (Coleoptera: Coccinellidae). Agrarökologie 5:1–122Google Scholar
  62. Seago AE, Giorgi JA, Li J, Slipiński A (2011) Phylogeny, classification and evolution of ladybird beetles (Coleoptera: Coccinellidae) based on simultaneous analysis of molecular and morphological data. Mol Phylogenet Evol 60:137–151. doi: 10.1016/j.ympev.2011.03.015 CrossRefPubMedGoogle Scholar
  63. Seagraves M (2009) Lady beetle oviposition behavior in response to the trophic environment. Biol Control 51:313–322. doi: 10.1016/j.biocontrol.2009.05.015 CrossRefGoogle Scholar
  64. Slansky F, Rodriguez G (1986) Nutritional ecology of insects, mites, spiders and related invertebrates. Wiley, New York, p 1016Google Scholar
  65. Smith CA, Gardiner MM (2013) Oviposition habitat influences egg predation of native and exotic coccinellids by generalist predators. Biol Control 67:235–245. doi: 10.1016/j.biocontrol.2013.07.019 CrossRefGoogle Scholar
  66. Snyder WE (2009) Coccinellids in diverse communities: which niche fits. Biol Control 51:323–335. doi: 10.1016/j.biocontrol.2009.05.010 CrossRefGoogle Scholar
  67. Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton, p 296Google Scholar
  68. Townsend CR, Begon M, Harper JL (2006) Fundamentos em ecologia. Artmed, Porto Alegre, p 592Google Scholar
  69. Tscharntke T, Bommarco R, Clough Y, Crist T, Kleijn D, Rand TA, Tylianakis JM, Nouhuys S, Vidal S (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43:294–309. doi: 10.1016/j.biocontrol.2007.08.006 CrossRefGoogle Scholar
  70. Valério E, Cecílio A, Mexia A (2007) Population dynamics of aphids (Homoptera: Aphididae) and beneficial organisms in protected strawberry crop. Bol Sanidad Vegetal Plagas 33:153–161Google Scholar
  71. van Doorn WG, van Meeteren U (2003) Flower opening and closure: a review. J Exp Bot 54:1801–1812CrossRefPubMedGoogle Scholar
  72. van Emden HF, Harrington R (2007) Aphids as crop pests. CAB International, Massachusetts, p 800CrossRefGoogle Scholar
  73. Vantaux A, Roux O, Magro A, Orivel J (2012) Evolutionary perspectives on myrmecophily in ladybirds. Psyche 2012:1–7. doi: 10.1155/2012/591570 CrossRefGoogle Scholar
  74. Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539. doi: 10.1146/annurev.ecolsys.36.102803.095431 CrossRefGoogle Scholar
  75. Wong J, Morrison AC, Stoddard ST, Astete H, Chu YY, Baseer I, Scott T (2012) Linking oviposition site choice to offspring fitness in Aedes aegypti: consequences for targeted larval control of dengue vectors. Plos Negl Trop Dis 6:1–12. doi: 10.1371/journal.pntd.0001632 CrossRefGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2015

Authors and Affiliations

  1. 1.Univ de BrasíliaBrasíliaBrasil
  2. 2.Embrapa Recursos Genéticos e BiotecnologiaBrasíliaBrasil

Personalised recommendations