Neotropical Entomology

, Volume 44, Issue 1, pp 1–9 | Cite as

Absence of Transovarial Transmission of ‘Candidatus Phytoplasma ulmi’ in the Vector Amplicephalus curtulus Linnavuori & DeLong (Hemiptera: Cicadellidae): Is It a Rule More Than an Exception?

  • N L Arismendi
  • N Fiore
  • R Carrillo
Ecology, Behavior and Bionomics


Candidatus Phytoplasma ulmi’ (Elm yellows, 16SrV-A), transmitted by Amplicephalus curtulus Linnavuori & DeLong (Hemiptera: Cicadellidae), has been found in native Chilean plants, and transovarial transmission has been considered as a possible form of transmission. An analysis to detect the presence of ‘Ca. Phytoplasma ulmi’ and other phytoplasmas in A. curtulus eggs, nymphs of the first and fifth instars were carried out in two experiments using nested PCR and DNA sequencing. The first experiment showed the natural acquisition of phytoplasma by adult females, and the second demonstrated the acquisition of phytoplasma in controlled conditions. Results showed that eggs and the first and fifth instars were not positive for phytoplasmas in nested PCR. ‘Candidatus Phytoplasma ulmi’ was detected and identified on average 10 and 47% of the adult females used in experiments 1 and 2, respectively. Other phytoplasma (X-disease group) was also found in adult females used in the experiment 1. We demonstrate that although gravid females contain phytoplasmas, they are not able to transmit them to their progeny, confirming that transovarial transmission of ‘Ca. Phytoplasma ulmi’ does not occur in A. curtulus.


Elm yellows leafhopper phytoplasma transovarial transmission X-disease 



This work was supported by Grant for Doctoral thesis AT-24100081 and Chilean program of scholarship for graduate students D-21080534 by the National Commission for Scientific and Technological Research, CONICYT, Chile.


  1. Alma A, Bosco D, Danielli A, Bertaccini A, Vibio M, Arzone A (1997) Identification of phytoplasmas in eggs, nymphs and adults of Scaphoideus titanus Ball reared on healthy plants. Insect Mol Biol 6:115–121PubMedCrossRefGoogle Scholar
  2. Alvarez E, Mejía JF, Llano GA, Loke JB, Calari A, Duduk B, Bertaccini A (2009) Characterization of a phytoplasma associated with frogskin disease in cassava. Plant Dis 93:1139–1145CrossRefGoogle Scholar
  3. Arismendi N, González F, Zamorano A, Andrade N, Pino AM, Fiore N (2011a) Molecular identification of ‘Candidatus Phytoplasma fraxini’ in murta and peony in Chile. Bull Insectol 64:S95–S96Google Scholar
  4. Arismendi N, Andrade N, Riegel R, Zamorano A, Fiore N (2011) Molecular identification of 16SrIII-J and 16SrV-A phytoplasmas in Ugni molinae and Amplicephalus curtulus. Proceedings of 20th “Congreso Chileno de Fitopatología”, Santiago (Chile), 29 November - 01 December 2011 pp. 11–12Google Scholar
  5. Arismendi N, Riegel R, Carrillo R (2014) In vivo transmission of ‘Candidatus Phytoplasma ulmi’ by Amplicephalus curtulus (Hemiptera: Cicadellidae) and its effect on ryegrass (Lolium multiflorum Cv. Tama). J Econ Entomol 107:83–91PubMedCrossRefGoogle Scholar
  6. Bai X, Zhang J, Ewingh A, Miller SA, Radek AJ, Schevchenko D, Tsukerman K, Walunas T, Lapidus A, Campbell JW, Hogenhout SA (2006) Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol 188:3682–3696PubMedCentralPubMedCrossRefGoogle Scholar
  7. Batlle A, Altabella N, Sabaté J, Laviña A (2008) Study of the transmission of stolbur phytoplasma to different crop species, by Macrosteles. Ann Appl Biol 152:235–242CrossRefGoogle Scholar
  8. Bosco D, Palermo S, Mason G, Tedeschi R, Marzachì C, Boccardo G (2002) DNA-based methods for the detection and the identification of phytoplasmas in insect vector extracts. Mol Biotechnol 22:9–18PubMedCrossRefGoogle Scholar
  9. Crosslin JM, Vandemark GJ, Munyaneza JE (2006) Development of a real-time, quantitative PCR for detection of the Columbia basin potato purple top phytoplasma in plants and beet leafhoppers. Plant Dis 90:663–667CrossRefGoogle Scholar
  10. Davis RE, Jomantiene R, Dally EL, Wolf TK (1998) Phytoplasmas associated with grapevine yellows in Virginia belong to group 16SrI, subgroup A (tomato big bud phytoplasma subgroup) and group 16SrIII, new subgroup I. Vitis 37:131–137Google Scholar
  11. Fiore N, Prodan S, Paltrinieri S, Gajardo A, Botti S, Pino AM, Montealegre J, Bertaccini A (2007) Molecular characterization of phytoplasmas in Chilean grapevines. Bull Insectol 60:331–332Google Scholar
  12. Gajardo A, Fiore N, Prodan S, Paltrinieri S, Botti S, Pino AM, Zamorano A, Montealegre J, Bertaccini A (2009) Phytoplasma associated with grapevine yellows disease in Chile. Plant Dis 93:789–796CrossRefGoogle Scholar
  13. Galdeano E, Torres LE, Meneguzzi N, Guzman F, Gomez GG, Docampo DM, Conci LR (2004) Molecular characterization of 16S ribosomal DNA and phylogenetic analysis of two X-disease group phytoplasmas affecting China-tree (Melia azedarach L.) and garlic (Allium sativum L.) in Argentina. J Phytopathol 152:174–181CrossRefGoogle Scholar
  14. Galetto L, Bosco D, Balestrini R, Genre A, Fletcher J, Marzachì C (2011) The major antigenic membrane protein of ‘Candidatus Phytoplasma asteris’ selectively interacts with ATP synthase and actin of leafhopper vectors. PLoS One 6:e22571PubMedCentralPubMedCrossRefGoogle Scholar
  15. González F, Zamorano A, Pino AM, Paltrinieri S, Bertaccini A, Fiore N (2011) Identification of phytoplasma belonging to X-disease group in cherry in Chile. Bull Insectol 64:S235–S236Google Scholar
  16. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224PubMedCrossRefGoogle Scholar
  17. Gundersen DE, Lee I-M (1996) Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathol Mediterr 35:144–151Google Scholar
  18. Hanboonsong Y, Choosai C, Panyim S, Damak D (2002) Transovarial transmission of sugarcane white leaf phytoplasma in the insect vector Matsumuratettix hiroglyphicus (Matsumura). Insect Mol Biol 11:97–103PubMedCrossRefGoogle Scholar
  19. Hansen AK, Trumble JT, Stouthamer R, Paine TD (2008) A new huanglongbing (HLB) Candidatus species, “Ca. Liberibacter psyllaurous”, found to infect tomato and potato is vectored by the psyllid Bactericera cockerelli (Sulc). Appl Environ Microbiol 74:5862–5865PubMedCentralPubMedCrossRefGoogle Scholar
  20. Harrison NA, Boa E, Carpio ML (2003) Characterization of phytoplasmas detected in Chinaberry trees with symptoms of leaf yellowing and decline in Bolivia. Plant Pathol 52:147–157CrossRefGoogle Scholar
  21. Hepp R, Vargas M (2002) Detección por PCR del agente causal de la marchitez amarilla de la remolacha en cicadélidos (Homóptera: Cicadellidae) asociados al cultivo de la remolacha. Fitopatología 37:67–108Google Scholar
  22. Hogenhout SA, Oshima K, Ammar E-D, Kakizawa S, Kingdom HN, Namba S (2008) Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol 9:403–423PubMedCrossRefGoogle Scholar
  23. Jomantiene R, Davis RE, Valiunas D, Alminaite A (2002) New group 16SrIII phytoplasma lineages in Lithuania exhibit rRNA interoperon sequence heterogeneity. Eur J Plant Pathol 108:507–517CrossRefGoogle Scholar
  24. Kakizawa S, Oshima K, Namba S (2006) Diversity and functional importance of phytoplasma membrane proteins. Trends Microbiol 14:254–256PubMedCrossRefGoogle Scholar
  25. Kakizawa S, Oshima K, Namba S (2010) Functional genomics of phytoplasmas. In: Weintraub PG, Jones P (eds) Phytoplasmas, genomes, plant hosts and vectors. CABI Publishing, Wallingford, pp 37–50, 331 pGoogle Scholar
  26. Kawakita H, Saiki T, Wei W, Mitsuhashi W, Watanabe K, Sato M (2000) Identification of mulberry dwarf phytoplasmas in the genital organs and eggs of leafhopper Hishimonoides sellatiformis. Phytopathology 90:909–914PubMedCrossRefGoogle Scholar
  27. Kline KA, Dodson KW, Caparon MG, Hultgren SJ (2010) A tale of two pili: assembly and function of pili in bacteria. Trends Microbiol 18:224–232PubMedCentralPubMedCrossRefGoogle Scholar
  28. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gilson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  29. Lee ME, Grau CR, Lukaesko LA, Lee IM (2002) Identification of aster yellows phytoplasmas in soybean in Wisconsin based on RFLP analysis of PCR-amplified products (16S rDNAs). Can J Plant Pathol 24:125–130CrossRefGoogle Scholar
  30. Lee I-M, Martini M, Macone C, Zhu SF (2004) Classification of phytoplasma strains in the elm yellows group (16SrV) and proposal of ‘Candidatus Phytoplasma ulmi’ for the phytoplasma associated with elm yellows. Int J Syst Evol Microbiol 54:337–347PubMedCrossRefGoogle Scholar
  31. Lin H, Lou B, Glynn JM, Doddapaneni H, Civerolo E, Chen C, Duan Y, Zhou L, Vahling CM (2011) The complete genome sequence of ‘Candidatus Liberibacter solanacearum’, the bacterium associated with potato zebra chip disease. PLoS One 6:e19135PubMedCentralPubMedCrossRefGoogle Scholar
  32. Marcone C, Neimark H, Ragozzino A, Lauer U, Seemüller E (1999) Chromosome sizes of phytoplasmas composing major phylogenetic groups and subgroups. Phytopathology 89:805–810PubMedCrossRefGoogle Scholar
  33. Marzachì C, Veratti F, Bosco D (1998) Direct PCR detection of phytoplasmas in experimentally infected insects. Ann Appl Biol 133:45–54CrossRefGoogle Scholar
  34. Montano HG, Davis RE, Dally EL, Pimentel JP, Brioso PST (2000) Identification and phylogenetic analysis of a new phytoplasma from diseased chayote in Brazil. Plant Dis 84:429–436CrossRefGoogle Scholar
  35. Navrátil M, Pribylová J, Válová P, Fialová R, Šafárová D, Špak J, Ubelková DK, Etrzik KP, Arešová RK, Špaková V (2007) Detection and identification of phytoplasmas in Ribes rubrum. Bull Insectol 60:123–124Google Scholar
  36. Pelz-Stelinski KS, Brlansky RH, Ebert TA, Rogers ME (2010) Transmission parameters for Candidatus Liberibacter asiaticus by Asian citrus psyllid (Hemiptera: Psyllidae). J Econ Entomol 103:1531–1541PubMedCrossRefGoogle Scholar
  37. Schneider B, Ahrens U, Kirkapatrick B, Seemüller E (1993) Classification of plant-pathogenic mycoplasma-like organisms using restriction-site analysis of PCR-amplified 16S rDNA. J Gen Microbiol 139:519–527CrossRefGoogle Scholar
  38. Smart CD, Schneider B, Blomquist CL, Guerra LJ, Harrison NA, Ahrens U, Seemüller E, Kirkpatrick BC (1996) Phytoplasma-specific PCR primers based on sequences of the 16S-23S rRNA spacer region. Appl Environ Microbiol 62:2988–2993PubMedCentralPubMedGoogle Scholar
  39. Suzuki S, Oshima K, Kakizawa S, Arashida R, Jung HY, Yamaji Y, Nishigawa H, Ugaki M, Namba S (2006) Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. PNAS 103:4252–4257PubMedCentralPubMedCrossRefGoogle Scholar
  40. Tedeschi R, Ferrato V, Rossi J, Alma A (2006) Possible phytoplasma transovarial transmission in the psyllids Cacopsylla melanoneura and Cacopsylla pruni. Plant Pathol 55:18–24CrossRefGoogle Scholar
  41. Wally O, El Hadrami A, Khadhair AH, Adam LR, Shinners-Carnelley T, Elliott B, Daayf F (2008) DNA sequencing reveals false positives during the detection of aster yellows phytoplasmas in leafhoppers. Sci Hortic 116:130–137CrossRefGoogle Scholar
  42. Wei W, Davis RE, Lee I-M, Zhano Y (2007) Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int J Syst Evol Microbiol 57:1855–1867PubMedCrossRefGoogle Scholar
  43. Weintraub PG (2007) Insect vectors of phytoplasmas and their control—an update. Bull Insectol 60:169–173Google Scholar
  44. Weintraub PG, Beanland L (2006) Insect vectors of phytoplasmas. Ann Rev Entomol 51:91–111CrossRefGoogle Scholar
  45. Weisburg WG, Tully JG, Rose DL, Petzel JP, Oyaizu H, Mandelco L, Sechrest J, Lawrence TG, Van Etten J (1989) A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol 171:6455–6467PubMedCentralPubMedGoogle Scholar
  46. Zhao Y, Wei W, Lee I-M, Shao J, Suo X, Davis RE (2009) Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). Int J Syst Evol Microbiol 59:2582–2593PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2014

Authors and Affiliations

  1. 1.Lab of Entomology, Institute of Production and Plant Protection, Fac of Agricultural SciencesUniv Austral de ChileValdiviaChile
  2. 2.Dept of Plant Protection, Fac of Agricultural SciencesUniv de ChileSantiagoChile
  3. 3.Graduate School, Faculty of Agricultural SciencesUniv Austral de ChileValdiviaChile

Personalised recommendations