Advertisement

Neotropical Entomology

, Volume 42, Issue 5, pp 521–526 | Cite as

High Variation in Single Nucleotide Polymorphisms (SNPs) and Insertions/Deletions (Indels) in the Highly Invasive Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Middle East-Asia Minor 1 (MEAM1)

  • Z C Lü
  • H B Sun
  • F H WanEmail author
  • J Y Guo
  • G F Zhang
Systematics, Morphology and Physiology

Abstract

Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Middle East-Asia Minor 1 (MEAM1) is invasive and adaptive to varied environments throughout the world. The adaptability is closely related to genomic variation such as single nucleotide polymorphisms (SNPs) and insertions/deletions (indels). In order to elucidate the feature of SNPs and indels in MEAM1, and reveal the association between SNPs/indels and adaptive capacity to various environments, a computational approach with QualitySNP was used to identify reliable SNPs and indels on the basis of 9110-expressed sequence tags of MEAM1 present in the NCBI database. There were 575 SNPs detected with a density of 10.1 SNPs/kb and 6.4 SNPs/contig. Also, 237 transitions (39.3%) and 366 transversions (60.7%) were obtained, where the ratio of transitions to transversions was 0.65:1. In addition, 581 indels with a density of 14.1 indels/kb and 9.2 indels/contig were detected. Collectively, it showed that invasive MEAM1 has high SNPs density, and higher SNPs percentage than non-invasive B. tabaci species. A high SNPs density/percentage in MEAM1 yielded a high genomic variation that might have allowed it to adapt to varied environments, which provides some support to understand the invasive nature of MEAM1 at the genomic level. High levels of genomic variation are implicated in the level of adaptive capacity and invasive species are thought to exhibit higher levels of adaptive capacity than non-invasive species.

Keywords

Expressed sequence tags (ESTs) genomic variation invasive species 

Notes

Acknowledgments

We thank Prof. Dr. Imtiaz Ali Khan, Chairman, Department of Entomology, NWFP Agricultural University Peshawar, NWFP, Pakistan, for reviewing the original manuscript. This research project was supported by the National Basic Research and Development Program (Grant no. 2009CB119200), the Ministry of Science and Technology, China, and the National Natural Science Foundation of China (31100269), Commonwealth Special Fund for the Agricultural Industry (no. 200903034), the Ministry of Science and Technology, China, and Common Wealth Special Fund for the Agricultural Industry (no. 201303019).

Supplementary material

13744_2013_152_MOESM1_ESM.txt (582 kb)
ESM 1 (TXT 581 kb)

References

  1. Beldade P, Rudd S, Gruber JD, Long AD (2006) A wing expressed sequence tag resource for Bicyclus anynana butterflies, an evo-devo model. BMC Genom 7:130–146CrossRefGoogle Scholar
  2. Berger J, Suzuki T, Senti KA, Stubbs J, Schaffner G, Dickson BJ (2001) Genetic mapping with SNP markers in Drosophila. Nat Genet 29:475–481PubMedCrossRefGoogle Scholar
  3. Boykin LM, Shatters RG Jr, Rosell RC, Mckenzie CL, Bagnall RA, De Barro P, Frohlich DR (2007) Global relationships of Bemisiatabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrialCOI DNA sequences. Mol Phylogenet Evol l44(3):1306–1319CrossRefGoogle Scholar
  4. Boykin LM, Armstrong KF, Kubatko L, De Barro P (2012) Species delimitation and global biosecurity. Evol Bioinform 8:1–37CrossRefGoogle Scholar
  5. Brookes AJ (1999) The essence of SNPs. Gene 234:177–186PubMedCrossRefGoogle Scholar
  6. Brown JK, Lambert GM, Ghanim M, Czosnek H, Galbraith DW (2005) Nuclear DNA content of the whitefly Bemisia tabaci (Genn.) (Aleyrodidae: Homoptera/Hemiptera) estimated by flow cytometry. Bull Entomoll Res 95:309–312Google Scholar
  7. Cheng TC, Xia QY, Qian JF, Liu C, Lin Y, Zha XF, Xiang ZH (2004) Mining single nucleotide polymorphisms from EST data of silkworm, Bombyx mori, inbred strain Dazao. Insect Biochem Mol 34:523–530CrossRefGoogle Scholar
  8. Chu D, Liu GX, Fan ZX, Tao YL, Zhang YJ (2007) Genetic differentiation of different geographical populations of Bemisia tabaci (Gennadius) complex. Agri Sci China 6(6):696–705CrossRefGoogle Scholar
  9. Chu D, Gao CS, De Barro PJ, Zhang YJ, Wan FH (2011) Investigation of the genetic diversity of an invasive whitefly in China using both mitochondrial and nuclear DNA markers. B Entomol Res 101(4):477–486CrossRefGoogle Scholar
  10. Coata HS, Brown JK, Sivasupamaniam S, Bird J (1993) Regional distribution, insecticide resistance, and reciprocal crosses between the A and B biotypes of Bemisia tabaci. Ins Sci App 14:255–266Google Scholar
  11. De Barro PJ, Liu SS, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: astatement of species status. Ann Rev Entomol 56:1–19CrossRefGoogle Scholar
  12. Dinsdale A, Cook L, Riginos C, Buckley YM, De Barro P (2010) Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann Entomol Soc Am 103:196–208CrossRefGoogle Scholar
  13. Eyre-Walker A (2006) The genomic rate of adaptive evolution. Trends Ecol Evol 10(21):567–574Google Scholar
  14. Greathead AH (1986) Host plants. In: Cock MJW (ed) Bemisia tabaci—a literature survey. CAB International Institute of Biological Control, Silwood Park, pp 17–26Google Scholar
  15. Guryev V, Berezikov E, Malik R, Plasterk RHA, Cuppen E (2004) Single nucleotide polymorphisms associated with rat expressed sequences. Genome Res 14:1438–1443PubMedCrossRefGoogle Scholar
  16. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JMC, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai ZW, Kraft CL, Abri JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chatuverdi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu ZP, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke ZX, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin JJ, Lobo NF, Lopez JR, Malek JA, McIntosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O’Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao HG, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun JT, Thomasova D, Ton LQ, Topalis P, Tu ZJ, Unger MF, Walenz B, Wang A, Wang J, Wang M, Wang XL, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang HY, Zhao Q, Zhao SY, Zhu SP, Zhimulev I, Coluzzi M, della Torre A, Roth CW, Louis C, Kalush F, Mura RJ, Myers EW, Adams MD, Smith HO, Broder S, Gardner MJ, Fraser CM, Birney E, Bork P, Brey PT, Venter JC, Weissenbach J, Kafatos FC, Collins FH, Hoffman SL (2003) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–142CrossRefGoogle Scholar
  17. Hu J, De Barro P, Zhao H, Wang J, Nardi F, Liu SS (2011) An extensive field survey combined with a phylogenetic analysis reveals rapid and widespread invasion of two alien whiteflies in China. PLoS One 6(1):e16061PubMedCrossRefGoogle Scholar
  18. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877PubMedCrossRefGoogle Scholar
  19. Labate JA, Baldo AM (2005) Tomato SNP discovery by EST mining and resequencing. Mol Breed 16:343–349CrossRefGoogle Scholar
  20. Leshkowitz D, Gazit S, Reuveni E, Ghanim M, Czosnek H, McKenzie C, Shatters RL Jr, Brown JK (2006) Whitefly (Bemisia tabaci) genome project: analysis of sequenced clones from egg, instar, and adult (viruliferous and non-viruliferous) cDNA libraries. BMC Genom 7:79–98CrossRefGoogle Scholar
  21. Lynch M (2007) The origins of genome architecture. Sinauer Associates, SunderlandGoogle Scholar
  22. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL, Hunt SE, Cole CG, Coggill PC, Rice CM, Ning ZM, Rogers J, Bentley DR, Kwok PY, Mardis ER, Yeh RT, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier LD, Waterston RH, McPherson JD, Gilman B, Schaffner S, Van Etten WJ, Reich D, Higgins J, Daly MJ, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody MC, Linton L, Lander ES, Altshuler D (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933PubMedCrossRefGoogle Scholar
  23. Stumpf MPH (2004) Haplotype diversity and SNP frequency dependence in the description of genetic variation. Eur J Hum Genet 12:469–477PubMedCrossRefGoogle Scholar
  24. Syvanen AC (2001) Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet 2:930–942PubMedCrossRefGoogle Scholar
  25. Tang JF, Vosman B, Voorrips RE, van der Linden CG, Leunissen JAM (2006) QualitySNP: a pipeline for detecting single nucleotide polymorphisms and insertions/deletions in EST data from diploid and polyploid species. BMC Bioinforma 7:438–453CrossRefGoogle Scholar
  26. Tay WT, Evans GA, Boykin LM, De Barro PJ (2012) Will the real Bemisia tabaci please stand up? PLoS One 7(11):1–5CrossRefGoogle Scholar
  27. Useche FJ, Gao G, Harafey M, Rafalski A (2001) High-throughput identification, database storage and analysis of SNPs in EST sequences. Genome Informa 12:194–203Google Scholar
  28. Varshney RK, Beier U, Khlestkina EK, Kota R, Korzun V, Graner A, Borner A (2007) Single nucleotide polymorphisms in rye (Secale cereale L.): discovery, frequency, and applications for genome mapping and diversity studies. Theor Appl Genet 114:1105–1116PubMedCrossRefGoogle Scholar
  29. Wan FH, Zhang GF, Liu SS, Luo C, Ch D, Zhang YJ, Zang LS, Jiu M, Lü ZC, Cui XH, Zhang LP, Zhang F, Zhang QW, Liu WX, Liang P, Lei ZR, Zhang YJ (2009) Invasive mechanisms and management of Bemisia tabaci biotype B. Chin Sci Ser C 52(1):88–95CrossRefGoogle Scholar
  30. Wang XW, Luan JB, Li JM, Zhang CX, Bao YY, Liu SS (2010) De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genom 11:400–411CrossRefGoogle Scholar
  31. Wang XW, Li JM, Luan JB, Xia J, Su YL, Liu SS (2011) Transcriptome analysis and comparison reveal divergence between two invasive whitefly cryptic species. BMC Genom 12:458–470CrossRefGoogle Scholar
  32. Wang XW, Zhao QY, Luan JB, Wang YJ, Yan GH, Liu SS (2012) Analysis of a native whitefly transcriptome and its sequence divergence with two invasive whitefly species. BMC Genom 13:529–542CrossRefGoogle Scholar
  33. Wiltshire T, Pletcher MT, Batalov S, Barnes SW, Tarantino LM, Cooke MP, Wu H, Smylie K, Santrosyan A, Copeland NG, Jenkins NA, Kalush F, Mural RJ, Glynne RJ, Kay SA, Adams MD, Fletcher CF (2003) Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. Proc Natl Acad Sci USA 100:3380–3385PubMedCrossRefGoogle Scholar
  34. Wondji CS, Hemingway J, Ranson H (2007) Identification and analysis of single nucleotide polymorphisms (SNPs) in the mosquito Anopheles funestus, malaria vector. BMC Genom. doi: 10.1186/1471-2164-8-5 Google Scholar
  35. Wong GK, Hillier L, Brandstrom M, Croojmans R, Ovcharenko I, Gordon L, Stubbs L, Lucas S, Glavina T, Kaiser P, Gunnarsson U, Webber C, Overton I (2005) International Chicken Polymorphism Map Consortium. A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature 432:717–722CrossRefGoogle Scholar
  36. Xie W, Meng QS, Wu QJ, Wang SL, Yang X, Yang NN, Li RM, Jiao XG, Pan HP, Liu BM, Xu BY, Hu SN, Zhou XG, Zhang YJ (2012) Pyrosequencing the Bemisia tabaci transcriptome reveals a highly diverse bacterial community and a robust system for insecticide resistance. PLoS One 7(4):e35181. doi: 10.1371/journal.pone.0035181 PubMedCrossRefGoogle Scholar
  37. Yang ZH, Yoder AD (1999) Estimation of the transition/transversion rate bias and species sampling. J Mol Evol 48:274–283PubMedCrossRefGoogle Scholar
  38. Yu H, Wan FH, Guo JY (2012) Different thermal tolerance and hsp gene expression in invasive and indigenous sibling species of Bemisia tabaci. Biol Invasions. doi: 10.1007/s10530-012-0171-7 Google Scholar
  39. Zhang LP (2005) Studies on population dynamics, genetic diversity of invasive Bemisia tabaci and its molecular mechanism of resistance to thiame thoxam. PhD Dissertation. China Agriculture University, BeijingGoogle Scholar
  40. Zhang LP, Zhang YJ, Zhang WJ, Wu QJ, Xu BY, Chu D (2005) Analysis of genetic diversity among different geographical populations and determination of biotypes of Bemisia tataci in China. J Appl Entomol 129(3):121–128CrossRefGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2013

Authors and Affiliations

  • Z C Lü
    • 1
  • H B Sun
    • 1
  • F H Wan
    • 1
    • 2
    Email author
  • J Y Guo
    • 1
    • 2
  • G F Zhang
    • 1
  1. 1.State Key Lab for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural ScienceBeijingChina
  2. 2.Center for Management of Invasive Alien Species, Ministry of AgricultureBeijingChina

Personalised recommendations