Neotropical Entomology

, Volume 42, Issue 1, pp 102–111 | Cite as

Field Evaluation of Bt Cotton Crop Impact on Nontarget Pests: Cotton Aphid and Boll Weevil

  • E R SujiiEmail author
  • P H B Togni
  • P de A Ribeiro
  • T de A Bernardes
  • P V G N Milane
  • D P Paula
  • C S S Pires
  • E M G Fontes
Pest Management


Bt cotton plants expressing Cry1Ac protein have high specificity for the control of lepidopteran larvae. However, studies conducted in several countries have shown these plants have a differential impact on nontarget herbivores. The aim of this study was to compare the colonization rates and population abundance of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) and the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae), in plots of Bt (Nuopal) and non-Bt cotton (Delta Opal) in an experimental field in Brasilia, DF, Brazil. No difference was observed in the preference and colonization by winged aphids to plants from the two treatments. There was no significant difference in abundance of wingless aphids or in the production of winged aphids between treatments. Apparently, the parameters that control factors such as fecundity, survival, and dispersal were similar on both Bt and non-Bt plants. Monitoring of plants for coccinellids, a specialist predator of aphids, and ants that act on the dispersal of aphids among plants showed no significant difference between Bt and non-Bt plants, supporting the inference above. Regarding the effect on boll weevil, there was also no significant difference between treatments in the total number of fruiting structures attacked in each plot, the percentage of fruiting structures attacked per plant or on the number of weevils emerging from fruits with boll weevil damage from egg-laying, when damaged fruit samples were held in the laboratory. Based on these results, we conclude that there is no impact of Bt cotton crop expressing Cry1Ac on the nontarget herbivores tested under field conditions.


Biosafety cry toxin herbivory nontarget organism sustainable pest management 



The authors thank Marina M. Teixeira, Francisco M. Caldas, Vinicius A. Ferreira, and Adam Zeilinger for their help in data collection, Joseane Padilha da Silva for technical support in statistical analysis, and Renata Velozo Timbó for technical support in the analysis for immunodetection. CNPq is acknowledged for financial support (processes 479211/2007-8 and No. 304253/2007-3).


  1. Andow DA, Zwahlen C (2006) Assessing environmental risks of transgenic plants. Ecol Lett 9:196–214PubMedCrossRefGoogle Scholar
  2. Barros R, Degrande PE, Ribeiro JF, Rodrigues ALL, Nogueira RF, Fernandes MG (2006) Flutuação populacional de insetos predadores associados a pragas do algodoeiro. Arq Inst Biol 73:57–64Google Scholar
  3. Benedict JH, Sachs ES, Altman DW, Deaton WR, Kohel RJ, Ring DR, Berberich AS (1996) Field performance of cottons expressing transgenic Cry1A insecticidal proteins for resistance to Heliothis virescens and Helicoverpa zea (Lepidoptera: Noctuidae). J Econ Entomol 89:230–238Google Scholar
  4. Buckley RC (1987) Interactions involving plants, Homoptera, and ants. Annu Rev Ecol Syst 18:111–135CrossRefGoogle Scholar
  5. Burke HR, Clark WE, Cate JR, Fryxell PA (1986) Origin and dispersal of the boll weevil. Bull Entomol Soc Am 32:228–238Google Scholar
  6. Comitê Técnico Nacional de Biossegurança-CTNBIO. 2008. Resolução normativa número 05. Available at: Accessed 25 January 2011
  7. CONAB (2007) Série Histórica de Produção. Available at: Accessed 02 May 2011
  8. de Carvalho F, Gheysen G, Kushnir S, Van Montagu M, Inze D, Castresana C (1992) Suppression of 1,3-glucanase transgene expression in homozygous plants. EMBO 11:2595–2602Google Scholar
  9. Degrande PE (1991) Bicudo do algodoeiro: Táticas de controle para Mato Grosso do Sul. UFMS/NCA, Dourados, p 16Google Scholar
  10. Deng SD, Xu J, Zhang QW, Zhou SW, Xu GJ (2003) Effect of transgenic Bacillus thuringiensis cotton on population dynamics of non-target pests and natural enemies. Acta Entomol Sin 46:1–5Google Scholar
  11. Ebert TA, Cartwright B (1997) Biology and ecology of Aphis gossypii Glover (Homoptera: Aphididae). Southwest Entomol 22:116–153Google Scholar
  12. Estruch JJ, Gregory GW, Mullins MA, Nye GJ, Craig JA, Koziel MG (2006) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Nat Acad Sci 93:5389–5394CrossRefGoogle Scholar
  13. Fitt GP (1998) Efficacy of Ingard cotton—patterns and consequences. In: Proceedings of the Ninth Australian Cotton Conference, Conrad, The Cotton Research and Development Corporation, pp. 233–245.Google Scholar
  14. Fitt GP (2008) Have Bt crops led to changes in uses of insecticide use patterns and impacted IPM. In: Shelton AM, Kennedy GG (eds) Integration of insect-resistant genetically modified crops within IPM programs. Springer, New York, pp 303–328CrossRefGoogle Scholar
  15. Fontes EMG, Pires CSS, Sujii ER, Panizzi AR (2002) The environmental effects of genetically modified crops resistant to insects. Neot Entomol 31:497–513CrossRefGoogle Scholar
  16. Fontes EF, Ramalho FS, Underwood E, Barroso PAV, Simon MF, Sujii ER, Pires CSS, Beltrão N, Lucena WA, Freire EC (2006) The cotton agriculture context in Brazil. In: Hilbeck A, Andow DA, Fontes EMG (eds) Environmental risk assessment of genetically modified organisms volume 2: methodologies for assessing Bt cotton in Brazil. CABI, Wallingford, pp 21–66, 373CrossRefGoogle Scholar
  17. Freire EC (2007) Algodão no cerrado do Brasil. Mundial Gráfica e Editora, Brasilia, 917Google Scholar
  18. Fundo de Apoio a Cultura do Algodão (2006) In: E Moresco (ed.) Algodão: pesquisa e resultados para o campo. FACUAL, Cuiabá. 392 ppGoogle Scholar
  19. Greenplate JG (1999) Quantification of Bacillus thuringiensis insect control protein (Cry1Ac) over time in Bollgard cotton fruit and terminals. J Econ Entomol 92:1377–1383Google Scholar
  20. Hammer O, Harper DAT, Ryan PD. (2001) Paleontological statistics software package for education and data analyses. Paleontol Electr 4:1–9. Available at: Accessed 30 January 2011
  21. Hart CM, Fischer B, Neuhaus JM, Meins FJ (1992) Regulated inactivation of homologous gene expression in transgenic Nicotiana sylvestris plants containing a defense-related tobacco chitinase gene. Mol Gen Genet 235:179–188PubMedCrossRefGoogle Scholar
  22. Lawo NC, Wackers FL, Romeis J (2009) Indian Bt cotton varieties do not affect the performance of cotton aphids. PLoS One 4:e4804PubMedCrossRefGoogle Scholar
  23. Liu XD, Zhai BP, Zhang XX, Zong JM (2005) Impact of transgenic cotton plants on non-target pest, Aphis gossypii Glover. Ecol Entomol 30:307–315CrossRefGoogle Scholar
  24. Lu Y, Wu K, Jiang Y, Xia B, Li P, Feng H. Wyckhuys KAG, Guo Y (2010) Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328:1151–1154Google Scholar
  25. Naranjo SE, Ruberson JR, Sharma HC, Wilson L, Kongming W (2008) The present and future role of insect-resistant GM crops in cotton IPM. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant genetically modified crops within IPM programs. Springer, New York, pp 159–194, 441CrossRefGoogle Scholar
  26. Olsen KM, Daly JC, Holt HE, Finnegan EJ (2005) Season-long variation in expression of cry1ac gene and efficacy of Bacillus thuringiensis toxin in transgenic cotton against Helicoverpaarmigera (Lepidoptera: Noctuidae). J Econ Entomol 98:1007–1017PubMedCrossRefGoogle Scholar
  27. Palauqui JC, Vaucheret H (1995) Field trial analysis of nitrate reductase co-suppression: a comparative study of 38 combinations of transgene loci. Plant Mol Biol 29:149–159PubMedCrossRefGoogle Scholar
  28. Perlak FJ, Oppenhuizen M, Gustafson K, Voth R, Sivasupramaniam S, Heering D, Carey B, Ihrig RA, Roberts JK (2001) Development and commercial use of Bollgard cotton in the USA—nearly promises versus today´s reality. Plant J 27:489–501PubMedCrossRefGoogle Scholar
  29. Petterson J, Tjallingii WF, Hardie J (2007) Host plant selection. In: Vam Emdem HF, Harrington R (eds) Aphids as crop pests. CABI, London, pp 87–114, 752CrossRefGoogle Scholar
  30. Powell G, Tosh GR, Hardie J (2006) Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annu Rev Entomol 52:309–330CrossRefGoogle Scholar
  31. R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 409Google Scholar
  32. Ribeiro PA, Sujii ER, Diniz IR, Medeiros MA, Salgado-Laboriau ML, Branco MC, Pires CSS, Fontes EMG (2010) Alternative food sources and overwintering feeding behavior of the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae) under the tropical conditions of Central Brazil. Neotrop Entomol 39:28–34Google Scholar
  33. Sachs ES, Benedict JH, Stelly DM, Taylor JF, Altman DW, Berberich SA, Davis SK (1998) Expression and segregation of genes encoding Cry1A insecticidal proteins in cotton. Crop Sci 38:1–11CrossRefGoogle Scholar
  34. Santos WJ (2007) Manejo de pragas do algodão com destaque para o cerrado brasileiro. In: FREIRE EC (ed) Algodão no cerrado do Brasil. Mundial Gráfica e Editora, Brasilia, pp 403–478, 917Google Scholar
  35. Sharma HC, Ortiz R (2000) Transgenics, pest management, and the environment. Curr Sci 79:421–437Google Scholar
  36. Sisterson MS, Biggs RW, Olson C, Carrière Y, Dennehy TJ, Tabashnik BE (2004) Arthropod abundance and diversity in Bt and non-Bt cotton fields. Environ Entomol 33:921–929CrossRefGoogle Scholar
  37. Sujii ER, Lövei GL, Sétamou M, Silvie P, Fernandes MG, Dubois GSJ, Almeida RP (2006) Non-target and biodiversity impacts on non-target herbivorous pests. In: Hilbeck A, Andow DA, Fontes EMG (eds) Environmental risk assessment of genetically modified organisms volume 2: methodologies for assessing Bt cotton in Brazil. CABI, Wallingford, pp 133–154, 373CrossRefGoogle Scholar
  38. Sujii ER, Togni PHB, Nakasu EYT, Pires CSS, Paula DP, Fontes EMG (2008) Impacto do algodoeiro Bt na dinâmica populacional do pulgão-do-algodoeiro em casa de vegetação. Pesq Agropec Bras 43:1251–1256CrossRefGoogle Scholar
  39. SYSTAT SOFTWARE INC (2004) SigmaStat 3.1. for windows. INSO Corporation, Richmond, p 848Google Scholar
  40. Thu Cuc NT, Sujii ER, WIlson LJ, Underwood E, Andow DA, Hao MV, Zhai B, Chien HV (2008) Potential effect of transgenic cotton on non-target herbivores in Vietnan. In: Andow DA, Hilbeck A, Tuat NV (eds) Environmental risk assessment of genetically modified organisms volume 4: challenges and opportunities with Bt Cotton in Vietnam. CABI, Wallingford, pp 138–175, 360Google Scholar
  41. USDA-APHIS. (2006) Boll weevil erradication. Available at; Accessed 11 April 2011
  42. Vaissayre M, Hofs J, Schoeman A, Mellet M (2005) Impact des cotonniers génétiquement modifiés sur la biodiversité de la faune entomologique: le cas du coton Bt en Afrique du Sud. Int J Trop Insect Sci 25:63–72Google Scholar
  43. Whitehouse MEA, Wilson LJ, Fitt GP (2005) A comparison of arthropod communities in transgenic Bt and conventional cotton in Australia. Environ Entomol 35:1224–1241CrossRefGoogle Scholar
  44. Wolt JD, Keese P, Raybould A, Fitzpatrick JW, Burachik M, Gray A, Olin SS, Schiemann J, Sears M, Wu F (2010) Problem formulation in the environmental risk assessment for genetically modified plants. Transgenic Res 19:425–436PubMedCrossRefGoogle Scholar
  45. Wu KM (2004) IPM in cotton. In: Jia S (ed) Transgenic cotton. Science Press, Beijing, pp 218–224, 312Google Scholar
  46. Wu KM, Guo YY (2003) Infuences of Bacillus thuringiensis Berliner cotton planting on population dynamics of the cotton aphid, Aphis gossypii Glover, in Northern China. Pop Ecol 32:312–318Google Scholar
  47. Wu KM, Guo YY (2005) The evolution of cotton pest management practices in China. Ann Rev Entomol 50:31–52CrossRefGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2012

Authors and Affiliations

  • E R Sujii
    • 1
    Email author
  • P H B Togni
    • 2
  • P de A Ribeiro
    • 3
  • T de A Bernardes
    • 4
  • P V G N Milane
    • 4
  • D P Paula
    • 1
  • C S S Pires
    • 1
  • E M G Fontes
    • 1
  1. 1.Embrapa Recursos Genéticos e Biotcnologia-CenargenBrasiliaBrasil
  2. 2.Univ Federal de ViçosaViçosaBrasil
  3. 3.Univ de BrasiliaBrasíliaBrasil
  4. 4.Centro Universitário de Brasília-UNICEUBBrasíliaBrasil

Personalised recommendations