Neotropical Entomology

, Volume 41, Issue 4, pp 311–314 | Cite as

Morphological Changes in the Midgut of Aedes aegypti L. (Diptera: Culicidae) Larvae Following Exposure to an Annona coriacea (Magnoliales: Annonaceae) Extract

  • MS Costa
  • DO Pinheiro
  • JE Serrão
  • MJB PereiraEmail author
Systematics, Morphology and Physiology


Bioinsecticides are important in the control of disease vectors, but data regarding their physiological effects on target insects are incomplete. This study describes morphological changes that occur in the midgut of third instar Aedes aegypti L. (Diptera: Culicidae) following treatment with a methanolic extract of Annona coriacea (Magnoliales: Annonaceae). Dissected midguts were subdivided into anterior and posterior regions and analyzed by light and scanning electron microscopy. Insects exposed to the extract displayed intense, destructive cytoplasmic vacuolization in columnar and regenerative midgut cells. The apical surfaces of columnar cells exhibited cytoplasmic protrusions oriented toward the lumen, suggesting that these cells could be involved in apocrine secretory processes and/or apoptosis. We report that A. coriacea extracts induced morphological alterations in the midgut of A. aegypti midgut larvae, supporting the use of plant extracts for control of the dengue vector.


Apoptosis dengue histology mosquito plant extracts 



The authors would like to thank Dr. P. Pimenta (Centro de Pesquisa René Rachou—Fiocruz) for providing eggs of A. aegypti for the initial rearing, Dr. P. Teixeira and Dr. E. L. Dall'Oglio (Lab de Pesquisa em Química de Produtos Naturais—UFMT) for the preparation of the crude extract, and J.F.S. Cossolin and F. B. Magalhães for their support during the review of this paper. We also thank the Biological Sciences of IB-UNESP Botucatu, SP for their technical assistance with the scanning electron microscopy and BioMed Proofreading for English review. Financial support was provided by FAPEMAT.


  1. Abed RA, Cavasin GM, Silva HHG, Geris R, Silva IG (2007) Alterações morfohistológicas em larvas de Aedes aegypti (Linnaeus, 1762) (Diptera, Culicidae) causadas pela atividade larvicida do óleo-resina da planta medicinal Copaifera reticulata Ducke (Leguminosae). Rev Patol Trop 36:75–86Google Scholar
  2. Alali FQ, Liu XX, McLaughlin JL (1999) Annonaceous acetogenins: recent progress. J Nat Prod 62:504–540PubMedCrossRefGoogle Scholar
  3. Alves SN, Serrão JE, Melo AL (2010) Alterations in the fat body and midgut of Culex quinquefasciatus larvae following exposure to different insecticides. Micron 41:592–597PubMedCrossRefGoogle Scholar
  4. Arruda W, Oliveira GMC, Silva IG (2003) Toxicidade do extrato etanólico de Magonia pubescens sobre larvas de Aedes aegytpi. Rev Soc Bras Med Trop 36:17–25PubMedCrossRefGoogle Scholar
  5. Azevedo DO, Neves CA, Santos-Mallet JR, Gonçalves TCM, Zanuncio JC, Serrão JE (2009) Notes on midgut ultrastructure of Cimex hemipterus (Hemiptera: Cimicidae). J Med Ent 46:435–441CrossRefGoogle Scholar
  6. Baker MG, Fidler DP (2006) Global Public health surveillance under New International Health Regulations. EID Journal 12:1058–1060Google Scholar
  7. Barreto CF, Cavasin GM, Silva HHG, Silva IG (2006) Estudo das alterações morfo-histológicas em larvas de Aedes aegypti (Diptera, Culicidae) submetidas ao extrato bruto etanólico de Sapindus saponaria Lin (Sapindaceae). Rev Patol Trop 35:37–57Google Scholar
  8. Braga IA, Valle D (2007) Aedes aegypti: histórico do controle no Brasil. Rev Sist Único de Saúde do Brasil 16:113–118Google Scholar
  9. Caetano FH, Torres Jr AH, Camargo Matias MI, Tomotake MEM (1994) Apocrine secretion in the ant, Pachycondyla striata, ventriculus (Formicidae: Ponerinae). Cytobios 235–242Google Scholar
  10. Chapman RF (1998) The insects: structure and function, 4th edn. Harvard University Press, Cambridge, p 770CrossRefGoogle Scholar
  11. Cristofoletti PT, Ribeiro AF, Terra WR (2001) Apocrine secretion of amylase and exocytosis of trypsin along the midgut of Tenebrio molitor larvae. J Ins Physiol 47:143–155CrossRefGoogle Scholar
  12. Cruz-Landim C, Serrão JE, Silva de Moraes RLM (1996) Cytoplasmic protrusions from digestive cells of bees. Cytobios 88:95–104Google Scholar
  13. Guarido MM (2009). Atividade inseticida de extratos de Annona foetida Mart. (Annonaceae) sobre imaturos de Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). 69f. Dissertação (Mestrado em Ciências Biológicas), Universidade Federal do Paraná, CuritibaGoogle Scholar
  14. Gullan PJ, Cranston OS (2008) Os Insetos: um resumo de Entomologia. Roca, São Paulo, p 440pGoogle Scholar
  15. Gusmão DS, Páscoa V, Mathias L, Curcino Vieira IJ, Braz-Filho R, Alves Lemos FJ (2002) Derris (Lonchocarpus) urucu (Leguminosae) extract modifies the peritrophic matrix structure of Aedes aegypti (Diptera: Culicidae). Mem Inst Oswaldo Cruz 97:371–375PubMedCrossRefGoogle Scholar
  16. Lehane MJ, Billingsley PF (1996) Biology of the insect midgut. Chapman and Hall, London, p 486CrossRefGoogle Scholar
  17. Luna JED, Martins MF, Anjos AF, Kuwabara EF, Navarro-Silva MA (2004) Susceptibilidade de Aedes aegypti aos inseticidas temephos e cipermetrina, Brasil. Rev de Saúde Pública 38:842–843Google Scholar
  18. Meneses da Silva EL, Roblot F, Mahuteau J, Cavé A (1996) Coriadienin, the first annonaceous acetogenin with two double bonds isolated from Annona coriaceae. J Nat Prod 59:528–530PubMedCrossRefGoogle Scholar
  19. Rost-Roszkowska MM (2008) Degeneration of the midgut epithelium in Allacma fusca L. (Insecta, Collembola, Symphypleona): apoptosis and necrosis. Zool Sci 25:753–759PubMedCrossRefGoogle Scholar
  20. Serrão JE, Cruz-Landim C (1995) Gut structures in adult workers of necrophorous neotropical stingless bees (Hymenoptera: Apidae, Meliponinae). Ent Gen 19:261–265Google Scholar
  21. Silva HHG, Silva IG, Santos RMG, Rodrigues Filho E, Elias CN (2004) Larvicidal activity of tannins isolated of Magonia pubescens St. Hil. (Sapindaceae) against Aedes aegypti (Diptera, Culicidae). Rev Soc Bras Med Trop 37:396–399PubMedCrossRefGoogle Scholar
  22. Tettamanti G, Grimaldi A, Casartelli M, Ambrosetti E, Ponti B, Congiu T, Ferrarese R, Rivas-Pena ML, Pennacchio F, Eguileor M (2007) Programmed cell death and stem cell differentiation responsible for midgut replacement in Heliothis virescens during prepupal instar. Cell Tissue Research 330:345–359PubMedCrossRefGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2012

Authors and Affiliations

  • MS Costa
    • 1
  • DO Pinheiro
    • 3
  • JE Serrão
    • 4
  • MJB Pereira
    • 2
    Email author
  1. 1.Depto de Ciências BiológicasUNEMATTangará da SerraBrasil
  2. 2.Depto de AgronomiaUNEMATTangará da SerraBrasil
  3. 3.Univ de Cuiabá, UNICTangará da SerraBrasil
  4. 4.Depto de Biologia GeralUFVViçosaBrasil

Personalised recommendations