Neotropical Entomology

, Volume 41, Issue 4, pp 333–340 | Cite as

Life Histories and Fitness of Two Tuber Moth Species Feeding on Native Andean Potatoes

  • Finbarr G. Horgan
  • D. T. Quiring
  • A. Lagnaoui
  • Y. Pelletier
Pest Management


In the inter-Andean valleys of central Perú, two species of tuber moth, Phthorimaea operculella (Zeller) and Symmetrischema tangolias (Gyen), often occur simultaneously in stored potatoes. Traditional farming communities in the region produce a variety of native potatoes for local consumption. These include Solanum tuberosum subsp. andigena, the presumed predecessor of commercial potatoes, S. tuberosum subsp. tuberosum. In this study, we examined resistance against P. operculella in ten native Peruvian potato varieties (Casa blanca, Chispiadita, Madre de vaca, Mamaco negro, Misha, Chorisa, Mamaco rosado, Occa papa, Vacapa jayllo, and Yana tornasol). We also compared resistance in the first five of these varieties against S. tangolias. Varieties with pigmented periderms showed moderate resistance (30–40% against P. operculella in Mamaco negro, Mamaco rosado, and Yana tornasol and 55% against S. tangolias in Mamaco negro). All the other varieties were susceptible to both moth species. Small tubers tended to be the most resistant to the attack by both moths; however, this was not related to the availability of food for developing larvae, since pupal weight and development time were unaffected by the size of tubers. Similar responses by the two moths to native potatoes indicate that tuber resistance could be used to control the complex of tuber moths that damage potatoes in the Andes. We suggest that native potatoes, which are often easily introgressed with commercial potatoes, are a potential source of resistance against tuber moths.


Host plant resistance Phthorimaea operculella storage pests Symmetrischema tangolias 



We thank Madeline Vera, Veronica Cañedo, Alberto Salas, and Rene Gomez at the CIP for their help during this research. We thank two anonymous reviewers for helpful comments that improved the manuscript. Funding was provided through a grant from the Canadian International Development Agency for North–South Cooperation in Agriculture and an NSERC-Discovery grant to Dan Quiring.


  1. Celis C, Scurrah M, Cowgill S, Chumbiauca S, Green J, Franco J, Main G, Kiezebrink D, Visser RGF, Atkinson HJ (2004) Environmental biosafety and transgenic potato in a centre of diversity for this crop. Nature 432:222–225PubMedCrossRefGoogle Scholar
  2. Dangles O, Carpio C, Barragan AR, Zeddam J-L, Silvain J-F (2008) Temperature as a key driver of ecological sorting among invasive pest species in the tropical Andes. Ecol Appl 18:1795–1809PubMedCrossRefGoogle Scholar
  3. Dangles O, Mesias V, Crespo-Perez V, Silvain J-F (2009) Crop damage increases with pest species diversity: evidence from potato tuber moths in the tropical Andes. J App Ecol 46:1115–1121CrossRefGoogle Scholar
  4. Das GP, Magallona ED, Raman KV, Adalla CB (1993a) Growth and development of the potato tuber moth, Phthorimaea operculella (Zeller), on resistant and susceptible potato genotypes in storage. Philipp Entomol 9:15–27Google Scholar
  5. Das GP, Magallona ED, Raman KV, Adalla CB (1993b) Screening different potato genotypes under different population pressures for resistance to the potato tuber moth, Phthorimaea operculella (Zeller), in storage. Philipp Entomol 9:7–14Google Scholar
  6. Davidson MM, Butler RC, Wratten SD, Conner AJ (2006) Field evaluation of potato plants transgenic for a Cry1Ac gene conferring resistance to potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Crop Prot 25:216–224CrossRefGoogle Scholar
  7. Douches DS, Westedt AL, Zarka K, Schroeter B (1998) Potato transformation to combine natural and engineered resistance for controlling tuber moth. HortSci 33:1053–1056Google Scholar
  8. Douches D, Pett W, Visser D, Coombs J, Zarka K, Flecher K, Bothma G, Brink J, Koch M, Quemada H (2010) Field and storage evaluations of ‘SpuntaG2’ for resistance to potato tuber moth and agronomic performance. J Am Soc HortSci 135:333–340Google Scholar
  9. Estrada RN, Valencia VL (1988) Desarrollo de cultivares de papa resistentes a la palomilla Phthorimaea operculella (Zeller), en Colombia. Rev Latinoam Papa 1:64–73Google Scholar
  10. Fenemore PG (1979) Oviposition of potato tuber moth, Phthorimaea operculella Zell. (Lepidoptera: Gelechiidae); the influence of adult food, pupal weight, and host-plant tissue on fecundity. New Zeal J Zool 7:389–395CrossRefGoogle Scholar
  11. Golizadeh A, Razmjou J (2010) Life table parameters of Phthorimaea operculella (Lepidoptera: Gelechiidae), feeding on tubers of six potato cultivars. J Econ Entomol 103:966–972PubMedCrossRefGoogle Scholar
  12. Gurr GM, Symington CA (1998) Resistance to the potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), in potato (Solanum tuberosum ssp. tuberosum L.) tubers. Aus J Entomol 37:49–51CrossRefGoogle Scholar
  13. Horgan FG, Quiring DT, Lagnaoui A, Salas AR, Pelletier Y (2007) Periderm- and cortex-based resistance to tuber-feeding Phthorimaea operculella in two wild potato species. Entomol Exp Appl 125:249–258CrossRefGoogle Scholar
  14. Horgan FG, Quiring DT, Lagnaoui A, Salas AR, Pelletier Y (2010) Variations in resistance against Phthorimaea operculella in wild potato tubers. Entomol Exp Appl 137:269–279CrossRefGoogle Scholar
  15. Keller S (2003) Integrated pest management of the tuber moth in cropping systems of different agroecological zones. Tropical agriculture 11: advances in crop research 1. Margraf, Weikersheim, p 153Google Scholar
  16. Kroschel J, Zegarra O (2010) Attract-and-kill: a new strategy for the management of the potato tuber moths Phthorimaea operculella (Zeller) and Symmetrischema tangolias (Gyen) in potato: laboratory experiments towards optimizing pheromones and insecticide concentration. Pest Manag Sci 66:490–496PubMedCrossRefGoogle Scholar
  17. Lacey LA, Kroschel J, Arthurs SP, de la Rosa F (2010) Microbial control of the potato tuber moth Phthorimaea operculella (Lepidoptera: Gelechiidae). Rev Colomb Entomol 36:181–189Google Scholar
  18. Malakar R, Tingey WM (1999) Resistance of Solanum berthaultii foliage to potato tuberworm (Lepidoptera: Gelechiidae). J Econ Entomol 92:497–502Google Scholar
  19. Malakar R, Tingey WM (2000) Glandular trichomes of Solanum berthaultii and its hybrids with potato deter oviposition and impair growth of potato tuber moth. Entomol Exp Appl 94:249–257CrossRefGoogle Scholar
  20. Malakar-Kuenen R, Tingey WM (2006) Aspects of tuber resistance in hybrid potatoes to potato tuberworm. Entomol Exp Appl 120:131–137CrossRefGoogle Scholar
  21. National Research Council (1989) Lost crops of the Incas: little-known plants of the Andes and the promise for worldwide cultivation. National Academy Press, Washington, p 415Google Scholar
  22. Ochoa CM (1999) Las papas de Sudamérica: Perú. Allen, Lawrence, p 1036Google Scholar
  23. Ochoa CM (2001) Las papas de Sudamérica: Bolivia. Centro Internacional de la Papa, Lima, p 535Google Scholar
  24. Ojero MFO, Muerke JM (1985) Resistance of four potato varieties to the potato tuber moth, Phthorimaea operculella (Zell.) in storage. Insect Sci Appl 6:205–207Google Scholar
  25. Ortiz R, Iwanaga M, Raman KV, Palacios M (1990) Breeding for resistance to potato tuber moth, Phthorimaea operculella (Zeller), in diploid potatoes. Euphytica 50:119–125CrossRefGoogle Scholar
  26. Pelletier Y, Horgan FG, Pompon J (2011) Potato resistance to insects. Am J Pl Sci Biotec 5:37–51Google Scholar
  27. Raman KV, Palacios M (1982) Screening potato for resistance to potato tuberworm. J Econ Entomol 75:47–49Google Scholar
  28. Raman KV, Iwanaga M, Palacios M, Egusquiza R (1981) Studies on identifying sources of resistance to the potato tuberworm, Phthorimaea operculella (Zeller). Am Potato J 58:517Google Scholar
  29. Rêgo Lopes MT, Vendramim JD (2001) Resistência de genótipos de batata a Phthorimaea operculella (Zeller). Sci Agric 58:235–239CrossRefGoogle Scholar
  30. Rondon SI (2010) The potato tuberworm: a literature review of its biology, ecology and control. Am J Potato Res 87:149–166CrossRefGoogle Scholar
  31. Tisdale RA, Sappington TW (2001) Realized and potential fecundity, egg fertility, and longevity of laboratory-reared female beet armyworm (Lepidoptera: Noctuidae) under different adult diet regimes. Ann Entomol Soc Am 94:415–419CrossRefGoogle Scholar
  32. Valderrama AM, Velasquez N, Rodriguez E, Zapata A, Zaidi MA, Altosaar I, Arango R (2007) Resistance to Tecia solanivora (Lepidoptera: Gelechiidae) in three transgenic Andean varieties of potato expressing Bacillus thuringiensis Cry1Ac protein. J Econ Entomol 100:172–179PubMedCrossRefGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2012

Authors and Affiliations

  • Finbarr G. Horgan
    • 1
    • 4
  • D. T. Quiring
    • 1
  • A. Lagnaoui
    • 2
    • 5
  • Y. Pelletier
    • 1
    • 3
  1. 1.Population Ecology Group, Dept of BiologyUniv of New BrunswickFrederictonCanada
  2. 2.Depto de Entomología y NematologíaCentro Internacional de la PapaLimaPeru
  3. 3.Potato Research CentreAgriculture and Agri-Food CanadaFrederictonCanada
  4. 4.International Rice Research InstituteMetro ManilaPhilippines
  5. 5.Division of Environmentally and Socially Sustainable DevelopmentWashingtonUSA

Personalised recommendations