Journal on Data Semantics

, Volume 8, Issue 4, pp 235–262 | Cite as

The datAcron Ontology for the Specification of Semantic Trajectories

Specification of Semantic Trajectories for Data Transformations Supporting Visual Analytics
  • George A. VourosEmail author
  • Georgios M. Santipantakis
  • Christos Doulkeridis
  • Akrivi Vlachou
  • Gennady Andrienko
  • Natalia Andrienko
  • Georg Fuchs
  • Jose Manuel Cordero Garcia
  • Miguel Garcia Martinez
Original Article


As the number of moving objects increases, the challenges for achieving operational goals w.r.t. the mobility in many domains that are critical to economy and safety emerge dramatically. In domains such as air traffic management, this dictates a shift of operations’ paradigm from location based, as it is today, to trajectory based, where trajectories are turned into “first-class citizens”. Additionally, the increasing amount of data from heterogenous and disparate data sources implies the need for advanced analysis methods that require exploiting spatio-temporal mobility data in appropriate forms and at varying levels of abstraction. All these call for an in-principle way for organising integrated views of mobility data, with trajectories playing the main role. In this paper, we propose an ontology for modelling semantic trajectories, integrating spatio-temporal information regarding mobility of objects, at multiple, interlinked levels of abstraction. Our work builds upon a comprehensive framework that identifies fundamental spatio-temporal data types and specific conversions among these types. We validate the ontological specifications towards satisfying the needs of visual analysis tasks in the complex air traffic management domain, using real-world data.



This work is supported by the datAcron project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 687591.


  1. 1.
    Al-Dohuki S, Wu Y, Kamw F, Yang J, Li X, Zhao Y, Ye X, Chen W, Ma C, Wang F (2017) Semantictraj: a new approach to interacting with massive taxi trajectories. IEEE Trans Vis Comput Graph 23(1):11–20. CrossRefGoogle Scholar
  2. 2.
    Allen JF (1983) Maintaining knowledge about temporal intervals. Commun ACM 26(11):832–843. CrossRefzbMATHGoogle Scholar
  3. 3.
    Alvares LO, Bogorny V, Kuijpers B, de Macêdo JAF, Moelans B, Vaisman AA (2007) A model for enriching trajectories with semantic geographical information. In: GIS, p 22Google Scholar
  4. 4.
    Andrienko G, Andrienko N (2018) Creating maps of artificial spaces to explore trajectories. In: Proceedings of the 2018 international conference on advanced visual interfaces, AVI ’18, pp 53:1–53:3. ACM, New York.
  5. 5.
    Andrienko G, Andrienko N, Bak P, Keim D, Wrobel S (2013a) Visual analytics of movement. Springer, BerlinCrossRefGoogle Scholar
  6. 6.
    Andrienko G, Andrienko N, Chen W, Maciejewski R, Zhao Y (2017) Visual analytics of mobility and transportation: state of the art and further research directions. IEEE Trans Intell Transp Syst 18(8):2232–2249. CrossRefGoogle Scholar
  7. 7.
    Andrienko G, Andrienko N, Demsar U, Dransch D, Dykes J, Fabrikant SI, Jern M, Kraak MJ, Schumann H, Tominski C (2010) Space, time and visual analytics. Int J Geogr Inf Sci 24(10):1577–1600. CrossRefGoogle Scholar
  8. 8.
    Andrienko G, Andrienko N, Jankowski P, Keim D, Kraak M, MacEachren A, Wrobel S (2007) Geovisual analytics for spatial decision support: setting the research agenda. Int J Geogr Inf Sci 21(8):839–857. CrossRefGoogle Scholar
  9. 9.
    Andrienko N, Andrienko G (2013) Visual analytics of movement: an overview of methods, tools and procedures. Inf Vis 12(1):3–24. MathSciNetCrossRefGoogle Scholar
  10. 10.
    Andrienko N, Andrienko G, Garcia JMC, Scarlatti D (2019) Analysis of flight variability: a systematic approach. IEEE Trans Vis Comput Graph 25(1):54–64. CrossRefGoogle Scholar
  11. 11.
    Baglioni M, de Macêdo JAF, Renso C, Trasarti R, Wachowicz M (2009) Towards semantic interpretation of movement behavior. In: Advances in GIScience. Springer, pp 271–288Google Scholar
  12. 12.
    Bogorny V, Renso C, de Aquino AR, de Lucca Siqueira F, Alvares LO (2014) Constant—a conceptual data model for semantic trajectories of moving objects. Trans GIS 18(1):66–88CrossRefGoogle Scholar
  13. 13.
    Chu D, Sheets DA, Zhao Y, Wu Y, Yang J, Zheng M, Chen G (2014) Visualizing hidden themes of taxi movement with semantic transformation. In: Proceedings of the 2014 IEEE Pacific visualization symposium, PACIFICVIS ’14, pp 137–144. IEEE Computer Society, Washington, DC.
  14. 14.
    Fileto R, May C, Renso C, Pelekis N, Klein D, Theodoridis Y (2015) The baquara\({}^{\text{2 }}\) knowledge-based framework for semantic enrichment and analysis of movement data. Data Knowl Eng 98:104–122CrossRefGoogle Scholar
  15. 15.
    Hamad K, Quiroga C (2016) Geovisualization of archived ITS data-case studies. IEEE Trans Intell Transp Syst 17(1):104–112. CrossRefGoogle Scholar
  16. 16.
    Hu Y, Janowicz K, Carral D, Scheider S, Kuhn W, Berg-Cross G, Hitzler P, Dean M, Kolas D (2013) A geo-ontology design pattern for semantic trajectories. In: Tenbrink T, Stell J, Galton A, Wood Z (eds) Spatial Information Theory. Springer International Publishing, Cham, pp 438–456CrossRefGoogle Scholar
  17. 17.
    Kotis K, Vouros GA (2006) Human-centered ontology engineering: the HCOME methodology. Knowl Inf Syst 10(1):109–131CrossRefGoogle Scholar
  18. 18.
    Kraak M, Ormeling F (2010) Cartography: visualization of spatial data, 3rd edn. Guilford Publications, New YorkGoogle Scholar
  19. 19.
    Nogueira TP, Martin H (2015) Querying semantic trajectory episodes. In: Proceedings of MobiGIS, pp 23–30Google Scholar
  20. 20.
    Paiva Nogueira T, Bezerra Braga R, Martin H (2014) An ontology-based approach to represent trajectory characteristics. In: Fifth international conference on computing for geospatial research and application, Washington, DC.
  21. 21.
    Parent C, Spaccapietra S, Renso C, Andrienko GL, Andrienko NV, Bogorny V, Damiani ML, Gkoulalas-Divanis A, de Macêdo JAF, Pelekis N, Theodoridis Y, Yan Z (2013) Semantic trajectories modeling and analysis. ACM Comput Surv 45(4):42CrossRefGoogle Scholar
  22. 22.
    Peuquet DJ (1994) It’s about time: a conceptual framework for the representation of temporal dynamics in geographic information systems. Ann Assoc Am Geogr 84(3):441–461CrossRefGoogle Scholar
  23. 23.
    Ruback L, Casanova MA, Raffaetà A, Renso C, Vidal V (2016) Enriching mobility data with linked open data. In: Proceedings of the 20th international database engineering & applications symposium, IDEAS ’16, pp 173–182. ACM, New York.
  24. 24.
    Santipantakis GM, Doulkeridis C, Vouros GA, Vlachou A (2018) Masklink: efficient link discovery for spatial relations via masking areas. CoRR. arXiv:1803.01135
  25. 25.
    Santipantakis G, Vouros G, Glenis A, Doulkeridis C, Vlachou A (2017) The datAcron ontology for semantic trajectories. In: ESWC-poster sessionGoogle Scholar
  26. 26.
    Santipantakis GM, Glenis A, Kalaitzian N, Vlachou A, Doulkeridis C, Vouros GA (2018) FAIMUSS: flexible data transformation to RDF from multiple streaming sources. In: Proceedings of the 21th international conference on extending database technology, EDBT 2018, Vienna, Austria, 26–29 March 2018, pp 662–665.
  27. 27.
    Santipantakis GM, Kotis KI, Vouros GA, Doulkeridis C (2018) Rdf-gen: Generating RDF from streaming and archival data. In: Proceedings of the 8th international conference on web intelligence, mining and semantics, WIMS ’18, pp 28:1–28:10. ACM, New York.
  28. 28.
    Santipantakis GM, Vouros GA, Doulkeridis C, Vlachou A, Andrienko GL, Andrienko NV, Fuchs G, Garcia JMC, Martinez MG (2017) Specification of semantic trajectories supporting data transformations for analytics: the datacron ontology. In: Proceedings of the 13th international conference on semantic systems, SEMANTICS 2017, Amsterdam, 11–14 Sept 2017, pp 17–24.
  29. 29.
    Soltan Mohammadi M, Mougenot I, Thérèse L, Christophe F (2017) A semantic modeling of moving objects data to detect the remarkable behavior. In: AGILE 2017. Wageningen University, Chair group GIS & Remote Sensing (WUR-GRS), Wageningen.
  30. 30.
    Spaccapietra S, Parent C, Damiani ML, de Macêdo JAF, Porto F, Vangenot C (2008) A conceptual view on trajectories. Data Knowl Eng 65(1):126–146CrossRefGoogle Scholar
  31. 31.
    Vincenty T (1975) Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. In: Survey review XXII, pp 88–93. CrossRefGoogle Scholar
  32. 32.
    Vlachou A, Doulkeridis C, Glenis A, Santipantakis GM, Vouros GA (2019) Efficient spatio-temporal RDF query processing in large dynamic knowledge bases. In: Proceedings of the 34th ACM/SIGAPP symposium on applied computing, SAC ’19, pp 439–447. ACM, New York.
  33. 33.
    Wen Y, Zhang Y, Huang L, Zhou C, Xiao C, Zhang F, Peng X, Zhan W, Sui Z (2019) Semantic modelling of ship behavior in harbor based on ontology and dynamic bayesian network. ISPRS Int J Geo-Inf 8(3). CrossRefGoogle Scholar
  34. 34.
    Yan Z, Macedo J, Parent C, Spaccapietra S (2008) Trajectory ontologies and queries. Trans GIS 12(s1):75–91. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • George A. Vouros
    • 1
    Email author
  • Georgios M. Santipantakis
    • 1
  • Christos Doulkeridis
    • 1
  • Akrivi Vlachou
    • 1
  • Gennady Andrienko
    • 2
  • Natalia Andrienko
    • 2
  • Georg Fuchs
    • 2
  • Jose Manuel Cordero Garcia
    • 3
  • Miguel Garcia Martinez
    • 3
  1. 1.Department of Digital SystemsUniversity of PiraeusPiraeusGreece
  2. 2.Institute IAIS FraunhoferSt. AugustinGermany
  3. 3.CRIDAMadridSpain

Personalised recommendations