Journal on Data Semantics

, Volume 5, Issue 3, pp 117–139 | Cite as

Ontologies-Based Platform for Sociocultural Knowledge Management

  • Papa Fary Diallo
  • Olivier Corby
  • Isabelle Mirbel
  • Moussa Lo
  • Seydina Ndiaye
Original Article


In this paper, we present a sociocultural platform aiming at persevering and capitalizing sociocultural events in Senegal. This platform relies on Semantic Web technologies. First, we discuss the two ontologies we provided to support our platform: an upper-level sociocultural ontology and a human time ontology (HuTO). To build our upper-level ontology, we proposed a methodology based on the theory of Russian psychologist Lev Vygotsky called “Vygotskian Framework”. We also present how the upper-level ontology can be matched in the linked open data cloud. On the other hand, we present the HuTO of which major contributions are (i) the modeling of non-convex intervals (repetitive interval) like every Monday, (ii) representation of deictic temporal expressions which form specific relations with time speech and (iii) qualitative temporal notions which are temporal notions relative to a culture or a geographical position. Finally, we discuss the platform designed on top of Semantic MediaWiki to apply our scientific contributions. Indeed, the platform allows Senegalese communities to share and co-construct their sociocultural knowledge.


Upper ontology Domain ontology Semantic Web LOD Schema matching Temporal information 



This work is partially funded by Creatic4Africa Consortium, AUF (Agence Universitaire de la Francophonie) and LIRIMA (Laboratoire International de Recherche en Informatique et Mathématiques Appliquées). Special thanks to Diego Berrueta and Luis Polo for their help to design the first prototype. The anonymous referees of this paper provided a valuable list of comments that have been used to improve this paper.


  1. 1.
    Diallo PF, Ndiaye SM, Lo M (2011) Study of sociocultural ontology. First Int Conf Soc Eco Inf 1(5):69–74Google Scholar
  2. 2.
    Vygotsky LS (1978) Mind in society: the development of higherpsychological processes. Harvard UniversityPress, Cambridge, p 159Google Scholar
  3. 3.
    John-Steiner V, Mahn H (1996) Sociocultural approaches to learning and development: a Vygotskian framework. Educ Psychol 3I(3/4):191–206CrossRefGoogle Scholar
  4. 4.
    Kaptelinin V (2014) Activity theory. In: Soegaard M, Dam RF (eds) The encyclopedia of human-computer interaction, 2nd edn. The Interaction Design Foundation, AarhusGoogle Scholar
  5. 5.
    Uschold (1998) Knowledge level modeling: concepts and terminology. In: The knowledge engineering review, vol 13: 1, pp 5–29. Cambridge University PressGoogle Scholar
  6. 6.
    Gruber T (2007) Collective knowledge systems: where the social webmeets the semantic web. Web Semant Sci Serv Agents. doi: 10.1016/j.websem.2007.11.011
  7. 7.
    Ivic I (1994) In: Vygotsky LS (ed) Prospects:the quarterly review of comparative education (Paris, UNESCO: International Bureau of Education), vol XXIV, no. 3/4, pp 471–485Google Scholar
  8. 8.
    Noy NF (2004) Semantic integration: a survey of ontology-based approaches. In SIGMOD Record, vol 33, No. 4Google Scholar
  9. 9.
    Ladkin PB (1986) Primitives and units for time specification. In: The fifth national conference on artificial intelligence, Philadelphia, Pennsylvania (USA)Google Scholar
  10. 10.
    Bao J, Smart P, Braines D, Shadbolt N (2009) A controlled natural language interface for semantic media Wiki. In: Tetherless World Constellation Technical Report, TW-2009-05Google Scholar
  11. 11.
    Hall ET (1984) La danse de la vie—Temps culturel, Temps vcu. Paris, ditions du Seuil, pp 23–72Google Scholar
  12. 12.
    Hayes P (1996) A catalog of temporal theories. Technical Report UIUC-BI-AI-96-01, University of Illinois, p 61Google Scholar
  13. 13.
    Masolo C, Borgo S, Gangemi A, Guarino N, Oltramari A (2003) WonderWeb Deliverable D18 Ontology Library (final). IST Project 2001-33052 WonderWeb: Ontology Infrastructure for the Semantic WebGoogle Scholar
  14. 14.
    Allen JF (1983) Maintaining knowledge about temporal intervals. Commun ACM 26(11):832–843CrossRefzbMATHGoogle Scholar
  15. 15.
    Allen JF (1981) An interval-based representation of temporal knowledge. In: Proceedings of the 7th international joint conference on artificial intelligence (IJCAI81), pp 221–226, CanadaGoogle Scholar
  16. 16.
    Corcho O, Fernandez M, Gomez-Perez A (2003) Methodologies, tools and languages for building ontologies: where is the meeting point? In: Data knowledge engineering, 46Google Scholar
  17. 17.
    Uschold M, King M (1995) Towards a methodology for building ontologies. Workshop on basic ontological issues in knowledge sharingGoogle Scholar
  18. 18.
    Swartout B, Ramesh P, Knight K, Russ T (1997). Toward distributed use of large-scale ontologies. Symposium on ontological engineering of AAAI. Stanford (California), MarsGoogle Scholar
  19. 19.
    Grüninger M, Fox MS (1994) The role of competency questions in enterprise engineering. IFIP WG 5.7 Workshop on benchmarking. Theory and practice. Trondheim, NorwayGoogle Scholar
  20. 20.
    Gómez-Pérez A, Juristo N, Pazos J (1995) Evaluation and assessment of knowledge sharing technology. In: Mars NJ (ed) Towards very large knowledge bases. KBKS 95. IOS Press, Amsterdam, pp 289–296Google Scholar
  21. 21.
    Aussenac-Gilles N, Despres S, Szulman S (2008). The terminae method and platform for ontology engineering from texts. In: Bridging the gap between text and knowledge—selected contributions to ontology learning and population from text. IOS press, pp 192–223Google Scholar
  22. 22.
    Noy NF, McGuinness L (2001) Ontology development 101: a guide to creating your first ontology. Technical Report KSL-01-05Google Scholar
  23. 23.
    Cole M (2010) Cultural-historical activity theory. In: Qualitative research. Elsevier LtdGoogle Scholar
  24. 24.
    Wertsch JV, Del Rio P, Alvarez A (1995) Sociocultural studies: history, action, and mediation. In: Wertsch, del Rio P, Alvarez A (eds) Sociocultural studies of mind. Cambridge University Press, New York, pp 1–34CrossRefGoogle Scholar
  25. 25.
    Cole M (1995) Socio-cultural-historical psychology: some general remarks and a proposal for a new kind of cultural genetic methodology. In: Wertsch, del Rio P, Alvarez A (eds) Sociocultural studies of mind. Cambridge University Press, New York, pp 187–214CrossRefGoogle Scholar
  26. 26.
    Engeström Y (2000) Activity theory as a framework for analyzing and redesigning work. In: Ergonomics, pp 960–974Google Scholar
  27. 27.
    Leont’ev AN (1979) The development of the mind. Erythrós Press and Media, pp 428, ISBN 978-0-9805428-6-8Google Scholar
  28. 28.
    Kaladzavi G, Diallo PF, Kolyang, Lo M (2015) OntoSOC: sociocultural knowledge ontology. Int J Web Semant Technol (IJWesT), vol 6, No. 2Google Scholar
  29. 29.
    Suárez-Figueroa MC, Gómez-Pérez A, Fernández-López (2012) The NeOn methodology for ontology engineering. In: Ontology engineering in a networked world. Berlin: Springer, pp 9–34. doi: 10.1007/978-3-642-24794-1_2
  30. 30.
    Suárez-Figueroa MC (2010) NeOn methodology for building ontologynetworks: specification, scheduling and reuse. Thesis (Doctoral), Facultad de Informtica (UPM), Madrid, Spain, p 288Google Scholar
  31. 31.
    Baumann R, Loebe F, Herre H (2012) Ontology of time in GFO. 7th international conference on formal ontology in information systems, July 24–27Google Scholar
  32. 32.
    Lenat DB, Guha RV (1990) Building large knowledge-based systems: representation and inference in the Cyc project. Addison-Wesley, BostonGoogle Scholar
  33. 33.
    Witbrock M, Pittman K, Moszkowicz J, Beck A, Lenat DB (2015) Cyc and the Big C: reading that produces and uses hypotheses about complex molecular biology mechanisms. Scholarly big data: ai perspectives, challenges, and ideas: papers from the 2015 association for the advancement of artificial intelligence (AAAI) Workshop, pp 27–32Google Scholar
  34. 34.
    ICOM/CIDOC CRM Special Interest Group (2015) Definition of theCIDOC conceptual reference model. Version 6.0Google Scholar
  35. 35.
    Pease A (2007) The suggested upper merged ontology (SUMO) at age 7: progress and promise. At OntologGoogle Scholar
  36. 36.
    Pan F, Hobbs JR (2005) Temporal aggregates in OWL-time. FLAIRS conference, pp 560–565Google Scholar
  37. 37.
    Pan F (2007) Representing complex temporal phenomena for the semantic web and natural language. PhD Thesis at the University of Southern CaliforniaGoogle Scholar
  38. 38.
    Sauri R, Littman J, Knippen B, Gaizauskas R, Setzer A, Pustejovsky J (2006). TimeML Annotation Guide lines Version 1.2.1. In: TimeML specificationGoogle Scholar
  39. 39.
    Tao C, Solbrigh HR, Chute CG (2011). CNTRO 2.0: A harmonized semantic web ontology for temporal relation inferencing in clinical narratives. In: AMIA summits on translational science proceedings: 64–68.
  40. 40.
    Tao C, Wei-Qi W, Solbrigh H, Savova G, Chute CG (2010). CNTRO: a semantic web ontology for temporal relation inferencing in clinical narratives. In: AMIA annual symposium proceedings: 787–791.
  41. 41.
    W3c Working Group Note 12 April (2006). Defining N-ary relations on the semantic web.
  42. 42.
    Vaisman A, Hurtado C (2006) Reasoning about temporal constraintsin RDF. Principles and practice of semantic web reasoning. LectureNotes in computer science volume 4187, pp 164–178Google Scholar
  43. 43.
    Welty C, Fikes R (2006) A reusable ontology for fluents in OWL. Front Artif Intell Appl 150:226–236Google Scholar
  44. 44.
    Batsakis S, Petrakis GM (2011) SOWL: a framework for handlingspatio-temporal information in OWL 2.0. RuleML Europe: 242–249Google Scholar
  45. 45.
    Gutierrez C, Hurtado C, VAisman A (2005). Temporal RDF. In: European conference on the semantic web (ECSW05) (Best paper award), pp 93–107Google Scholar
  46. 46.
    Rula A, Palmonari M, Ngomo ACN, Gerber D, Lehmann J,Bühmann L (2014). Hybrid acquisition of temporal scopes for RDFData. In: The Semantic web: trends and challenges, pp 488–503Google Scholar
  47. 47.
    Scheuermann A, Motta E, Mulholland P, Gangemi A, Presutti V (2013). An empirical perspective on representing time. In: 7th international conference on knowledge capture, K-CAP, pp 89–96Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Papa Fary Diallo
    • 1
    • 2
    • 3
  • Olivier Corby
    • 1
    • 3
  • Isabelle Mirbel
    • 3
  • Moussa Lo
    • 2
  • Seydina Ndiaye
    • 2
  1. 1.INRIA Sophia AntipolisValbonneFrance
  2. 2.Université Gaston Berger - UFR SATSt. LouisSenegal
  3. 3.Univ. Nice Sophia Antipolis, CNRS, I3S, UMRValbonneFrance

Personalised recommendations