Journal on Data Semantics

, Volume 5, Issue 4, pp 249–269 | Cite as

SOWL QL: Querying Spatio-Temporal Ontologies in OWL

  • Konstantinos Stravoskoufos
  • Euripides G. M. PetrakisEmail author
  • Nikolaos Mainas
  • Sotirios Batsakis
  • Vasilis Samoladas
Original Article


We introduce SOWL QL, a query language for spatio-temporal information in ontologies. Building-upon SOWL (Spatio-Temporal OWL), an ontology for handling spatio-temporal information in OWL, SOWL QL supports querying over qualitative spatio-temporal information (expressed using natural language expressions such as “before”, “after”, “north of”, “south of”) rather than merely quantitative information (exact dates, times, locations). SOWL QL extends SPARQL with a powerful set of temporal and spatial operators, including temporal Allen topological, spatial directional and topological operations or combinations of the above. SOWL QL maintains simplicity of expression, and also upward and downward compatibility with SPARQL. Query translation in SOWL QL yields SPARQL queries, implying that querying spatio-temporal ontologies using SPARQL is still feasible but suffers from several drawbacks, the most important of them being that, queries in SPARQL become particularly complicated and users must be familiar with the underlying spatio-temporal representation (the “N-ary relations” or the “4D-fluents” approach in this work). Finally, querying in SOWL QL is supported by the SOWL reasoner which is not part of the standard SPARQL translation. The run-time performance of SOWL QL has been assessed experimentally in a real data setting. A critical analysis of its performance is also presented.


Query language Spatio-temporal ontology 


  1. 1.
    Allen J (1983) Maintaining knowledge about temporal intervals. Commun ACM 26(11):832–843CrossRefzbMATHGoogle Scholar
  2. 2.
    Anagnostopoulos E, Petrakis EGM, Batsakis S (2014) CHRONOS: improving the performance of qualitative temporal reasoning in OWL. In: ICTAI. IEEE Computer Society, Limasol, Cyprus pp 309–315Google Scholar
  3. 3.
    Arge L, Vitter JS (1996) Optimal dynamic interval management in external memory. In: 37th Annual Symposium on Foundations of Computer Science, pp 560–569Google Scholar
  4. 4.
    Artale A, Franconi E (2000) A survey of temporal extensions of description logics. Ann Math Artif Intell 30(1):171–210MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Baader F (2009) Description logics. In: Reasoning web: Semantic Technologies for Information Systems, 5th International Summer School 2009, Lecture Notes in Computer Science, vol 5689. Springer-Verlag, pp 1–39Google Scholar
  6. 6.
    Balbiani P, Condotta JF, del Cerro LF (1999) A new tractable subclass of the rectangle algebra. In: IJCAI. Morgan Kaufmann, Stockholm, Sweden pp 442–447Google Scholar
  7. 7.
    Baratis E, Petrakis EGM, Batsakis S, Maris N, and Papadakis N (2009) TOQL: temporal ontology querying language. 11th International Symposium on Spatial and Temporal Databases (SSTD), Aalborg, Denmark, pp 450–454Google Scholar
  8. 8.
    Batsakis S. (2011) SOWL: A framework for handling spatio-temporal information in OWL. Ph.D. thesis, Department of Electronic and Computer Engineering, Technical Univercity Of Crete. Accessed 10 May 2016
  9. 9.
    Batsakis S, Petrakis E (2011) SOWL: A framework for handling spatio-temporal information in OWL 2.0. In: 5th International Symposium on Rules: Research Based and Industry Focused (RuleML), pp 242–249Google Scholar
  10. 10.
    Batsakis S, Petrakis E (2012) Imposing restrictions over temporal properties in OWL: a rule-based approach. In: Bikakis A, Giurca A (eds) Rules on the web: research and applications, vol 7438, Lecture Notes in Computer ScienceSpringer, Berlin Heidelberg, pp 240–247Google Scholar
  11. 11.
    Batsakis S, Stravoskoufos K, Petrakis E (2011) Temporal reasoning for supporting temporal queries in OWL 2.0. 15th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems (KES), vol 6881, pp 558–567Google Scholar
  12. 12.
    Herring JR (2010) OpenGIS implementation standard for geographic information: simple feature access—Part 2: SQL option. Version 1.2.1. Accessed 10 May 2016
  13. 13.
    Bodirsky M, Chen H (2009) Qualitative temporal and spatial reasoning revisited. J Logic Comput 19:1359–1383MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Budak Arpinar I, Sheth A, Ramakrishnan C, Lynn Usery E, Azami M, Kwan M (2006) Geospatial ontology development and semantic analytics. Trans GIS 10(4):551–575CrossRefGoogle Scholar
  15. 15.
    Buneman P, Kostylev E (2010) Annotation algebras for RDFS. In: 2nd International Workshop on the Role of Semantic Web in Provenance Management (SWPM)Google Scholar
  16. 16.
    Bykau S, Mylopoulos J, Rizzolo F, Velegrakis Y (2012) On modeling and querying concept evolution. J Data Semant 1(1):31–55CrossRefGoogle Scholar
  17. 17.
    Champin P, Passant A (2010) SIOC in action representing the dynamics of online communities. In: Proceedings of the 6th International Conference on Semantic Systems, ACM, pp 1–7Google Scholar
  18. 18.
    Clementini E, Felice PD, van Oosterom P (1993) A small set of formal topological relationships suitable for end-user interaction. In: Abel DJ, Ooi BC (eds) SSD, Lecture Notes in Computer Science, vol 692. Springer, London, UK pp 277–295Google Scholar
  19. 19.
    Cohn AG, Bennett B, Gooday J, Gotts NM (1997) Qualitative spatial representation and reasoning with the region connection calculus. GeoInformatica 1(3):275–316CrossRefGoogle Scholar
  20. 20.
    Daskalakis C, Karp RM, Mossel E, Riesenfeld S, Verbin E (2011) Sorting and selection in posets. SIAM J Comput 40(3):597–622MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Egenhofer MJ, Franzosa RD (1991) Point-set topological spatial relations. Int J Geogr Inf Syst 5(2):161–174CrossRefGoogle Scholar
  22. 22.
    Frasincar F, Milea V, Kaymak U (2010) tOWL: integrating time in OWL. Semantic web information management: a model-based perspective, pp 225–246Google Scholar
  23. 23.
    Gutierrez C, Hurtado C, Vaisman A (2005) Temporal RDF. In: 2nd European Semantic Web Conference (ESWC 2005), pp 93–107Google Scholar
  24. 24.
    Gutierrez C, Hurtado CA, Vaisman A (2007) Introducing time into RDF. IEEE Trans Knowl Data Eng 19(2):207–218CrossRefGoogle Scholar
  25. 25.
    Guting R (1994) An introduction to spatial database systems. VLDB J 3(4):357–399CrossRefGoogle Scholar
  26. 26.
    Hart G, Dolbear C (2013) Linked data: a geo-spatial perspective, chap 6. CRC PressGoogle Scholar
  27. 27.
    Hobbs J, Pan F (2006) Time ontology in OWL. W3C Working Draft, September 2006. Accessed 10 May 2016
  28. 28.
    Jonsson P, Krokhin A (2004) Complexity classification in qualitative temporal constraint reasoning. Artif Intell 160(1–2):35–51MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Klein M, Fensel D (2001) Ontology Versioning on the Semantic Web. In: Proceedings of the International Semantic Web Working Symposium (SWWS), Citeseer, pp 75–91Google Scholar
  30. 30.
    Koubarakis M, Kyzirakos K (2010) Modeling and querying metadata in the semantic sensor web: the model stRDF and the query language stSPARQL. Proceedings of the 7th Extended Semantic Web Conference (ESWC), pp 425–439Google Scholar
  31. 31.
    Krokhin A, Jeavons P, Jonsson P (2003) Reasoning about temporal relations: the tractable subalgebras of Allen’s interval algebra. J ACM (JACM) 50(5):591–640MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Lutz C (2003) Description logics with concrete domains-a survey. In: Advances in modal logics, vol 4. King’s College PublicationsGoogle Scholar
  33. 33.
    Lutz C, Wolter F, Zakharyashev M (2008) Temporal description logics: a survey. In: 15th International Symposium on Temporal Representation and Reasoning, TIME, IEEE, pp 3–14Google Scholar
  34. 34.
    Mainas N, Petrakis EGM (2014) CHOROS 2: improving the performance of qualitative spatial reasoning in OWL. In: ICTAI. IEEE Computer Society, limasol, Cyprus pp 283–290Google Scholar
  35. 35.
    Montello D, Frank A (1996) Modeling directional knowledge and reasoning in environmental space: testing qualitative metrics. Constr Cogn Maps GeoJ Libr 32(3):321–344CrossRefGoogle Scholar
  36. 36.
    Nebel B, Burckert H (1995) Reasoning about temporal relations: a maximal tractable subclass of Allen’s interval algebra. J ACM (JACM) 42(1):43–66MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Nikolaou C, Koubarakis M (2013) Querying incomplete geospatial information in RDF. In: Advances in spatial and temporal databases. 13th International Symposium (SSTD), Proceedings, Munich, Germany, August 21–23, 2013, pp 447–450Google Scholar
  38. 38.
    Noy N, Rector A (2006) Defining N-ary relations on the semantic web. Accessed 10 May 2016
  39. 39.
    Open Geospatial Consortium (2012) OGC GeoSPARQL—a geographic query language for RDF Data. Version 1.0 Accessed 10 May 2016
  40. 40.
    Perez J, Arenas M, Gutierrez C (2006) The semantics and complexity of SPARQL. In: 5th International Semantic Web Conference, ISWCGoogle Scholar
  41. 41.
    Perry M, Jain P, Sheth AP (2011) SPARQL-ST: extending SPARQL to support spatiotemporal queries. In: Ashish N, Sheth AP (eds) Geospatial semantics and the semantic web, no. 12 in semantic web and beyond, chap 3. Springer, New York, pp 61–86Google Scholar
  42. 42.
    Preparata FP, Shamos MI (1985) Computational geometry: an introduction. Springer-Verlag, New YorkGoogle Scholar
  43. 43.
    Prud’hommeaux E, Seaborne A (2006) SPARQL query language for RDF. W3C working draft 4. Accessed 10 May 2016
  44. 44.
    Pujari A, Sattar A (1999) A new framework for reasoning about points, intervals and durations. In: International Joint Conference On Artificial Intelligence, vol 16. Lawrence Erlbaum Associates Ltd, pp 1259–1267Google Scholar
  45. 45.
    Prez J, Arenas M, Gutierrez C (2010) nSPARQL: a navigational language for RDF. J Web Semant 8(4):255–270CrossRefGoogle Scholar
  46. 46.
    Randell D, Cui Z, Cohn A (1992) A spatial logic based on regions and connection. Principles of knowledge representation and reasoning. Proceedings of the 3rd International Conference (KR 92), vol 92, pp 165–176Google Scholar
  47. 47.
    Renz J (1999) Maximal tractable fragments of the region connection calculus: a complete analysis. Int Jt Conf Artif Intell 16:448–455Google Scholar
  48. 48.
    Renz J, Mitra D (2004) Qualitative direction calculi with arbitrary granularity. In: Trends in artificial intelligence: 8th Pacific Rim International Conference on Artificial Intelligence, Proceedings (PRICAI), vol 3157, pp 65–74Google Scholar
  49. 49.
    Renz J, Nebel B (2007) Qualitative spatial reasoning using constraint calculi. In: Aiello M, Pratt-Hartmann I, van Benthem J (eds) Handbook of spatial logics. Springer, Netherlands, pp 161–215Google Scholar
  50. 50.
    Rigaux P, Scholl M, Voisard A (2002) Spatial databases—with applications to GIS. Elsevier, San FranciscoGoogle Scholar
  51. 51.
    Sellis T (1999) Research issues in spatio-temporal database systems. Adv Spat Databases 1651:5–11CrossRefGoogle Scholar
  52. 52.
    Shaw R, Troncy R, Hardman L (2009) Lode: linking open descriptions of events. In: Gómez-Pérez A, Yu Y, Ding Y (eds) The semantic web. Springer, Berlin, pp 153–167Google Scholar
  53. 53.
    Sirin E, Parsia B, Grau B, Kalyanpur A, Katz Y (2007) Pellet: a practical OWL-DL reasoner. Web Semant Sci Serv Agents World Wide Web 5(2):51–53CrossRefGoogle Scholar
  54. 54.
    Skiadopoulos S, Koubarakis M (2005) On the consistency of cardinal direction constraints. Artif Intell 163(1):91–135MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Stocker M, Sirin E (2009) PelletSpatial: a hybrid RCC-8 and RDF/OWL reasoning and query engine. In: 6th International Workshop on OWL: Experiences and Directions (OWLED). Springer-Verlag New York, Inc, pp 2–31Google Scholar
  56. 56.
    Stravoskoufos K (2013) SOWL QL: querying spatio-temporal ontologies in OWL 2.0 . MSc Thesis, Department of Electronic and Computer Engineering, Technical University of Crete. Accessed 10 May 2016
  57. 57.
    Tao C, Wei W, Solbrig H, Savova G, Chute C (2010) CNTRO: a semantic web ontology for temporal relation inferencing in clinical narratives. In: AMIA Annual Symposium Proceedings, vol 2010. American Medical Informatics Association, pp 787–91Google Scholar
  58. 58.
    Tappolet J, Bernstein A (2009) Applied temporal RDF: efficient temporal querying of RDF data with SPARQL. In: Proceedings of the 6th European Semantic Web Conference on The Semantic Web: Research and Applications. Springer-Verlag, pp 308–322Google Scholar
  59. 59.
    Van Beek P (1989) Approximation algorithms for temporal reasoning. Proceedings of the 11th International Joint Conference on Artificial Intelligence-vol 2, pp 1291–1296Google Scholar
  60. 60.
    van Beek P, Cohen R (1990) Exact and approximate reasoning about temporal relations. Comput Intell 6:132–144CrossRefGoogle Scholar
  61. 61.
    Vilain M, Kautz H (1986) Constraint propagation algorithms for temporal reasoning. In: Proceedings of the 5th National Conference on Artificial Intelligence, pp 377–382Google Scholar
  62. 62.
    Welty C, Fikes R (2006) A reusable ontology for fluents in OWL. In: Formal ontology in information systems. Proceedings of the 4th International Conference (FOIS), pp 226–336Google Scholar
  63. 63.
    Yannakakis M (1982) The complexity of the partial order dimension problem. SIAM J Algebraic Discret Methods 3(3):351–358MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Konstantinos Stravoskoufos
    • 1
  • Euripides G. M. Petrakis
    • 1
    Email author
  • Nikolaos Mainas
    • 1
  • Sotirios Batsakis
    • 1
    • 2
  • Vasilis Samoladas
    • 1
  1. 1.School of Electronic and Computer EngineeringTechnical University of Crete (TUC)ChaniaGreece
  2. 2.Department of Informatics, School of Computing and EngineeringUniversity of HuddersfieldQueensgateUK

Personalised recommendations