Journal on Data Semantics

, Volume 4, Issue 1, pp 3–27 | Cite as

Semantic Enrichment of GSM-Based Artifact-Centric Models

  • Riccardo De Masellis
  • Domenico LemboEmail author
  • Marco Montali
  • Dmitry Solomakhin
Original Article


We provide a comprehensive framework for semantic GSM artifacts, discuss in detail its properties, and present main software engineering architectures it is able to capture. The distinguishing aspect of our framework is that it allows for expressing both the data and the lifecycle schema of GSM artifacts in terms of an ontology, i.e., a shared and formalized conceptualization of the domain of interest. To guide the modeling of data and lifecycle we provide an upper ontology, which is specialized in each artifact with specific lifecycle elements, relations, and business objects. The framework thus obtained allows to achieve several advantages. On the one hand, it makes the specification of conditions on data and artifact status attribute fully declarative and enables semantic reasoning over them. On the other, it fosters the monitoring of artifacts and the interoperation and cooperation among different artifact systems. To fully achieve such an interoperation, we enrich our framework by enabling the linkage of the ontology to autonomous database systems through the use of mappings. We then discuss two scenarios of practical interest that show how mappings can be used in the presence of multiple systems. For one of these scenarios we also describe a concrete instantiation of the framework and its application to a real-world use case in the energy domain, investigated in the context of the EU project ACSI.


Data-aware process modeling Artifact-centric processes Guard Stage Milestone lifecycle Ontologies Ontology-based data access Process monitoring 



This work has been supported by the EU FP7 project ACSI (Grant No. 257593) and by the FP7 large-scale integrating project Optique (Grant No. 318338).


  1. 1.
    van der Aalst WMP, et al (2011) Process mining manifesto. In: Proceedings of BPM Workshops, LNBIP. Springer, New York, pp 169–194Google Scholar
  2. 2.
    van der Aalst WMP, Barthelmess P, Ellis CA, Wainer J (2001) Proclets: a framework for lightweight interacting workflow processes. Int J Coop Inf Syst 10(4):443–481CrossRefGoogle Scholar
  3. 3.
    Abiteboul S, Hull R, Vianu V (1995) Foundations of databases. Addison-Wesley, UKzbMATHGoogle Scholar
  4. 4.
    Abiteboul S, Bourhis P, Galland A, Marinoiu B (2009) The AXML artifact model. In: Proceedings of TIME 2009, pp 11–17Google Scholar
  5. 5.
    Adjiman P, Chatalic P, Goasdoué F, Rousset MC, Simon L (2006) Distributed reasoning in a peer-to-peer setting: application to the Semantic Web. J Artif Intell Res 25:269–314zbMATHGoogle Scholar
  6. 6.
    Apt KR, Blair HA, Walker A (1988) Towards a theory of declarative knowledge. In: Foundations of deductive databases and logic programming. Morgan Kaufmann, Massachusetts, pp 89–148Google Scholar
  7. 7.
    Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider PF (eds) (2007) The description logic handbook: theory, implementation and applications, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  8. 8.
    Bagheri Hariri B, Calvanese D, De Giacomo G, De Masellis R, Felli P, Montali M (2013a) Description logic knowledge and action bases. J Artif Intell Res 46:651–689Google Scholar
  9. 9.
    Bagheri Hariri B, Calvanese D, De Giacomo G, Deutsch A, Montali M (2013b) Verification of relational data-centric dynamic systems with external services. In: Proceedings of PODS, pp 163–174Google Scholar
  10. 10.
    Bagheri Hariri B, Calvanese D, Montali M, Santoso A, Solomakhin D (2013c) Verification of semantically-enhanced artifact systems. In: Proceedings of ICSOC, LNCS. Springer, New YorkGoogle Scholar
  11. 11.
    Belardinelli F, Lomuscio A, Patrizi F (2012a) An abstraction technique for the verification of artifact-centric systems. In: Proceedings of KR, pp 319–328Google Scholar
  12. 12.
    Belardinelli F, Lomuscio A, Patrizi F (2012b) Verification of GSM-based artifact-centric systems through finite abstraction. In: Proceedings of ICSOC, LNCS. Springer, New York, pp 17–31Google Scholar
  13. 13.
    Berardi D, Calvanese D, De Giacomo G (2005) Reasoning on UML class diagrams. Artif Intell 168(1–2):70–118CrossRefzbMATHGoogle Scholar
  14. 14.
    Calì A, Gottlob G, Lukasiewicz T (2009) A general datalog-based framework for tractable query answering over ontologies. In: Proceedings of PODS, pp 77–86Google Scholar
  15. 15.
    Calvanese D, De Giacomo G, Lembo D, Lenzerini M, Rosati R (2004a) What to ask to a peer: ontology-based query reformulation. In: Proceedings of KR, pp 469–478Google Scholar
  16. 16.
    Calvanese D, De Giacomo G, Lenzerini M, Rosati R (2004b) Logical foundations of peer-to-peer data integration. In: Proceedings of PODS, pp 241–251Google Scholar
  17. 17.
    Calvanese D, De Giacomo G, Lembo D, Lenzerini M, Rosati R (2007a) EQL-Lite: Effective first-order query processing in description logics. In: Proceedings of IJCAI, pp 274–279Google Scholar
  18. 18.
    Calvanese D, De Giacomo G, Lembo D, Lenzerini M, Rosati R (2007b) Tractable reasoning and efficient query answering in description logics: the DL-Lite family. J Autom Reason 39(3):385–429CrossRefzbMATHGoogle Scholar
  19. 19.
    Calvanese D, De Giacomo G, Lembo D, Lenzerini M, Poggi A, Rodriguez-Muro M, Rosati R, Ruzzi M, Savo DF (2011) The Mastro system for ontology-based data access. Semant Web J 2(1): 43–53Google Scholar
  20. 20.
    Calvanese D, De Giacomo G, Lembo D, Montali M, Santoso A (2012) Ontology-based governance of data-aware processes. In: Proceedings of RR, LNCS, vol 7497. Springer, New York, pp 25–41Google Scholar
  21. 21.
    Calvanese D, De Giacomo G, Lembo D, Lenzerini M, Rosati R (2013) Data complexity of query answering in description logics. Artif Intell 195:335–360CrossRefzbMATHGoogle Scholar
  22. 22.
    Chesani F, Mello P, Montali M, Riguzzi F, Sebastianis M, Storari S (2009) Checking compliance of execution traces to business rules. In: Proceedings of BPM Workshops, LNBIP, vol 17. Springer, New York, pp 134–145Google Scholar
  23. 23.
    Civili C, Console M, De Giacomo G, Lembo D, Lenzerini M, Lepore L, Mancini R, Poggi A, Rosati R, Ruzzi M, Santarelli V, Savo DF (2013) MASTRO STUDIO: managing ontology-based data access applications. PVLDB 12:1314–1317Google Scholar
  24. 24.
    Cohn D, Hull R (2009) Business artifacts: a data-centric approach to modeling business operations and processes. IEEE Bull Data Eng 32(3):3–9Google Scholar
  25. 25.
    Damaggio E, Hull R, Vaculín R (2011) On the equivalence of incremental and fixpoint semantics for business artifacts with guard-stage-milestone lifecycles. In: Proceedings of BPM, LNCS. Springer, New York, pp 396–412Google Scholar
  26. 26.
    De Giacomo G, Lembo D, Lenzerini M, Rosati R (2007) On reconciling data exchange, data integration, and peer data management. In: Proceedings of PODS, pp 133–142Google Scholar
  27. 27.
    Deutsch A, Hull R, Patrizi F, Vianu V (2009) Automatic verification of data-centric business processes. In: Proceedings of ICDT, ACM, pp 252–267Google Scholar
  28. 28.
    Doan A, Halevy AY, Ives ZG (2012) Principles of data integration. Morgan Kaufmann, MassachusettsGoogle Scholar
  29. 29.
    Franconi E, Kuper G, Lopatenko A, Serafini L (2003) A robust logical and computational characterisation of peer-to-peer database systems. In: Proceedings of DBISP2P, pp 64–76Google Scholar
  30. 30.
    Fuxman A, Kolaitis PG, Miller RJ, Tan WC (2005) Peer data exchange. ACM Trans Database Syst 31(4):1454–1498CrossRefGoogle Scholar
  31. 31.
    Gelder AV (1989) Negation as failure using tight derivations for general logic programs. J Log Program 6(1&2):109–133CrossRefzbMATHGoogle Scholar
  32. 32.
    Glimm B, Horrocks I, Lutz C, Sattler U (2008) Conjunctive query answering for the description logic SHIQ. J Artif Intell Res 31:151–198MathSciNetGoogle Scholar
  33. 33.
    Gonzalez P, Griesmayer A, Lomuscio A (2012) Verifying GSM-based business artifacts. In: Proceedings of ICWS, IEEE, pp 25–32Google Scholar
  34. 34.
    Gruber TR (1993) Formal ontology in conceptual analysis and knowledge representation. In: Poli R, Guarino N (eds) Towards principles for the design of ontologies used for knowledge sharing. Kluwer Academic Publishers, New YorkGoogle Scholar
  35. 35.
    Haarslev V, Möller R (2001) RACER system description. In: Proceedings of IJCAR, LNAI, vol 2083. Springer, pp 701–705Google Scholar
  36. 36.
    Halevy A, Ives Z, Suciu D, Tatarinov I (2003) Schema mediation in peer data management systems. In: Proceedings of ICDE, pp 505–516Google Scholar
  37. 37.
    Hull R, Narendra NC, Nigam A (2009) Facilitating workflow interoperation using artifact-centric hubs. In: Proceedings of ICSOC, LNCS, vol 5900. Springer, New york, pp 1–18Google Scholar
  38. 38.
    Hull R, Damaggio E, De Masellis R, Fournier F, Gupta M, Heath FT III, Hobson S, Linehan M, Maradugu S, Nigam A, Sukaviriya PN, Vaculin R (2011) Business artifacts with guard-stage-milestone lifecycles: managing artifact interactions with conditions and events. In: Proceedings of DEBS, ACM, pp 51–62Google Scholar
  39. 39.
    Kolaitis PG (2005) Schema mappings, data exchange, and metadata management. In: Proceedings of PODS, pp 61–75Google Scholar
  40. 40.
    Kontchakov R, Lutz C, Toman D, Wolter F, Zakharyaschev M (2010) The combined approach to query answering in DL-Lite. In: Proceedings of KR, pp 247–257Google Scholar
  41. 41.
    Lenzerini M (2002) Data integration: a theoretical perspective. In: Proceedings of PODS, pp 233–246 Google Scholar
  42. 42.
    Limonad L, Boaz D, Hull R, Vaculín R, Heath F (2012) A generic business artifacts based authorization framework for cross-enterprise collaboration. In: Proceedings of SRII, pp 70–79Google Scholar
  43. 43.
    Linehan M (2011) GSM expression language. Technical report, IBM Research, available on requestGoogle Scholar
  44. 44.
    Meyer A, Smirnov S, Weske M (2011) Data in business processes. EMISA. Forum 31(3):5–31Google Scholar
  45. 45.
    Montali M, Maggi FM, Chesani F, Mello P, van der Aalst WMP (2013) Monitoring business constraints with the event calculus. ACM Trans Intell Syst Technol 5(1):17CrossRefGoogle Scholar
  46. 46.
    Motik B, Fokoue A, Horrocks I, Wu Z, Lutz C, Cuenca Grau B (2009) OWL 2 web ontology language profiles. W3C Recommendation, World Wide Web Consortium. Available at
  47. 47.
    Motik B, Cuenca Grau B, Horrocks I, Wu Z, Fokoue A, Lutz C (2012) OWL 2 Web Ontology Language profiles, 2nd edn. W3C recommendation, World Wide Web Consortium. Available at
  48. 48.
    Nigam A, Caswell NS (2003) Business artifacts: an approach to operational specification. IBM Syst J 42(3):428–445CrossRefGoogle Scholar
  49. 49.
    Object Management Group (OMG) (2013) Case management model and notation vers. 1.0 - Beta 1.
  50. 50.
    Poggi A, Lembo D, Calvanese D, De Giacomo G, Lenzerini M, Rosati R (2008) Linking data to ontologies. J Data Semant X:133–173Google Scholar
  51. 51.
    Rodriguez-Muro M, Calvanese D (2012) High performance query answering over DL-Lite ontologies. In: Proceedings of KR, pp 308–318Google Scholar
  52. 52.
    Sirin E, Parsia B, Kalyanpur A, Katz Y (2007) Pellet: a practical OWL-DL reasoner. J Web Semant 5(2):51–53CrossRefGoogle Scholar
  53. 53.
    Solomakhin D, Montali M, De Masellis R, Tessaris S (2013) Verification of artifact-centric systems: decidability and modeling issues. In: ICSOC, pp 252–266Google Scholar
  54. 54.
    Sun Y, Xu W, Su J, Yang J (2012) Sega: A mediator for artifact-centric business processes. In: Proceedings of of CoopIS, LNCS, vol 7567. Springer, New York, pp 658–661Google Scholar
  55. 55.
    Tsarkov D, Horrocks I (2006) FaCT++ description logic reasoner: system description. In: Proceedings of IJCAR, pp 292–297Google Scholar
  56. 56.
    Winslett M (1988) A model-based approach to updating databases with incomplete information. ACM Trans Database Syst 13(2):167–196CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Riccardo De Masellis
    • 1
  • Domenico Lembo
    • 1
    Email author
  • Marco Montali
    • 2
  • Dmitry Solomakhin
    • 2
  1. 1.Sapienza Università di RomaRomeItaly
  2. 2.Free University of Bozen-Bolzano Piazza Domenicani 3BolzanoItaly

Personalised recommendations