Journal on Data Semantics

, Volume 1, Issue 2, pp 99–131 | Cite as

Transaction Logic with Partially Defined Actions

  • Martín Rezk
  • Michael Kifer
Original Article


In this paper we develop a novel logic formalism, \({\mathcal{T} \, \mathcal{R}^{PAD}}\) (Transaction Logic with Partially Defined Actions), designed for reasoning about the effects of complex actions. \({\mathcal{T} \, \mathcal{R}^{PAD}}\) is based on a subset of Transaction Logic, but extends it with a new kind of formulas, called premise-formulas, which express information about states and the execution of actions. This makes the formalism more suitable for specifying partial knowledge about actions. We develop a sound and complete proof theory for \({\mathcal{T} \, \mathcal{R}^{PAD}}\) and illustrate the formalism on a number of instructive examples. In addition, we show that an expressive subset of \({\mathcal{T} \, \mathcal{R}^{PAD}}\) is reducible to standard logic programming and define a precise sense in which this reduction is sound and complete.


Transaction Logic Actions Knowledge representation Reasoning 


  1. 1.
    Anicic D, Fodor P, Stühmer R, Stojanovic N (2009) An approach for data-driven logic-based complex event processing. In: The 3rd ACM international conference on distributed event-based systems (DEBS)Google Scholar
  2. 2.
    Apt KR, van Emden MH (1982) Contributions to the theory of logic programming. J ACM 29:841–862. doi: 10.1145/322326.322339 Google Scholar
  3. 3.
    Baral C, Gelfond M (1993) Representing concurrent actions in extended logic programming. In: Proceedings of the 13th international joint conference on artifical intelligence, vol 2. Morgan Kaufmann, San Francisco, pp 866–871.
  4. 4.
    Baral C, Gelfond M (2000) Reasoning agents in dynamic domains. Kluwer, Norwell, pp 257–279.
  5. 5.
    Baral C, Gelfond M (2005) Reasoning about intended actions. In: Proceedings of the 20th national conference on artificial intelligence, vol 2. AAAI Press, pp 689–694.
  6. 6.
    Baral C, Gelfond M, Provetti A (1997) Representing actions: laws, observations and hypotheses. J Logic Program 31: 201–244MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bonner A, Kifer M (1993) Transaction logic programming. In: International conference on logic programming. MIT Press, Budapest, pp 257–282Google Scholar
  8. 8.
    Bonner A, Kifer M (1994) Applications of transaction logic to knowledge representation. In: Proceedings of the international conference on temporal logic. Lecture notes in artificial intelligence, vol 827. Springer, Bonn, pp 67–81Google Scholar
  9. 9.
    Bonner A, Kifer M (1995) Transaction logic programming (or a logic of declarative and procedural knowledge). Technical report CSRI-323, University of Toronto.
  10. 10.
    Bonner A, Kifer M (1998) A logic for programming database transactions. In: Chomicki J, Saake G (eds) Logics for databases and information systems, chap 5. Kluwer, pp 117–166Google Scholar
  11. 11.
    Bonner AJ, Kifer M (1994) Applications of transaction logic to knowledge representation. In: ICTL, pp 67–81Google Scholar
  12. 12.
    de Bruijn J, Rezk M (2009) A logic based approach to the static analysis of production systems. In: RR, pp 254–268Google Scholar
  13. 13.
    Chen W, Kifer M, Warren D (1993) HiLog: a foundation for higher-order logic programming. J Logic Program 15(3): 187–230MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Damásio CV, Alferes JJ, Leite Ja (2010) Declarative semantics for the rule interchange format production rule dialect. In: Proceedings of the 9th international semantic web conference on the semantic web (ISWC’10) volume, part I. Springer, Berlin, pp 798–813.
  15. 15.
    Davulcu H, Kifer M, Ramakrishnan CR, Ramakrishnan IV (1998) Logic based modeling and analysis of workflows. In: PODS, pp 25–33Google Scholar
  16. 16.
    Davulcu H, Kifer M, Ramakrishnan IV (2004) Ctr-s: a logic for specifying contracts in semantic web services. In: WWW, pp 144–153Google Scholar
  17. 17.
    Emerson EA (1995) Temporal and modal logic. In: Handbook of theoretical computer science. Elsevier, pp 995–1072Google Scholar
  18. 18.
    Enderton H (2001) A mathematical introduction to logic. Academic PressGoogle Scholar
  19. 19.
    Gelfond M, Lifschitz V (1993) Representing action and change by logic programs. J Logic Program 17: 301–322MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Giunchiglia E, Lifschitz V (1998) An action language based on causal explanation: preliminary report. In: Proc AAAI-98. AAAI Press, pp 623–630Google Scholar
  21. 21.
    Hanks S, McDermott D (1987) Nonmonotonic logic and temporal projection. Artif Intell 33(3):379–412. doi: 10.1016/0004-3702(87)90043-9
  22. 22.
    Inclezan D (2009) Modular action language ALM. In: Proceedings of the 25th international conference on logic programming, ICLP ’09, pp 542–543. doi: 10.1007/978-3-642-02846-5_55, URL:
  23. 23.
    John M (1983) Situations, actions, and causal laws. Tech. Rep. Memo 2. Stanford Artificial Intelligence Project, Stanford UniversityGoogle Scholar
  24. 24.
    Kifer M (2007) FLORA-2: an object-oriented knowledge base language. The FLORA-2 Web Site.
  25. 25.
    Kowalski R, Sergot M (1986) A logic-based calculus of events. New Gen Comput 4:67–95. doi: 10.1007/BF03037383.
  26. 26.
    Lam PE, Mitchell JC, Sundaram S (2009) A formalization of HIPAA for a medical messaging system. In: Proceedings of the 6th international conference on trust, privacy and security in digital business, TrustBus ’09, pp 73–85. doi: 10.1007/978-3-642-03748-1_8
  27. 27.
    Levesque HJ, Reiter R, Lespérance Y, Lin F, Scherl RB (1997) Golog: a logic programming language for dynamic domains. J Log Program 31(1-3): 59–83zbMATHCrossRefGoogle Scholar
  28. 28.
    Lloyd J (1987) Foundations of logic programming, 2nd edn. Springer, BerlinzbMATHCrossRefGoogle Scholar
  29. 29.
    Pearce D, Wagner G (1991) Logic programming with strong negation. In: Proceedings of the international workshop on extensions of logic programming. Springer, New York, pp 311–326.
  30. 30.
    Raymond R (1991) The frame problem in situation the calculus: a simple solution (sometimes) and a completeness result for goal regression. In: Artificial intelligence and mathematical theory of computation. Academic Press, San Diego, pp 359–380.
  31. 31.
    Rezk M, Kifer M (2011) On the equivalence between the L1 action language and partial actions in transaction logic. In: Rudolph S, Gutierrez C (eds) Web reasoning and rule systems. Lecture notes in computer science, vol 6902. Springer, Berlin, pp 185–200. doi: 10.1007/978-3-642-23580-1_14
  32. 32.
    Rezk M, Kifer M (2011b) Reasoning with actions in transaction logic. In: Rudolph S, Gutierrez C (eds) Web reasoning and rule systems. Lecture notes in computer science, vol 6902. Springer, Berlin, pp 201–216Google Scholar
  33. 33.
    Rezk M, Kifer M (2012) Formalizing production systems with rule-based ontologies. In: Seventh international symposium on foundations of information and knowledge systems (FOIKS). Lecture notes in computer science, vol 7153. Springer, KielGoogle Scholar
  34. 34.
    Rezk M, Nutt W (2011) Combining production systems and ontologies. In: The fifth international conference on web reasoning and rule systems RR’11. Springer, Berlin, pp 287–293Google Scholar
  35. 35.
    Roman D, Kifer M (2007) Reasoning about the behavior of semantic web services with concurrent transaction logic. In: VLDB, pp 627–638Google Scholar
  36. 36.
    Roman D, Kifer M (2008) Semantic web service choreography: contracting and enactment. In: International semantic web conference, pp 550–566Google Scholar
  37. 37.
    Roman D, Kifer M, Fensel D (2008) Wsmo choreography: from abstract state machines to concurrent transaction logic. In: ESWC, pp 659–673Google Scholar
  38. 38.
    Thielscher M (2005) Flux: a logic programming method for reasoning agents. TPLP 5(4–5): 533–565zbMATHGoogle Scholar
  39. 39.
    Thielscher M (2005) Reasoning robots: the art and science of programming robotic agents. Applied logic series. Springer, BerlinGoogle Scholar
  40. 40.
    Turner H (1996) Representing actions in default logic: a situation calculus approach. In: Proceedings of the symposium in honor of Michael Gelfond’s 50th birthdayGoogle Scholar
  41. 41.
    van Emden M, Kowalski R (1976) The semantics of predicate logic as a programming language. J ACM 23(4): 733–742zbMATHCrossRefGoogle Scholar
  42. 42.
    Yang G, Kifer M, Zhao C (2003) FLORA-2: a rule-based knowledge representation and inference infrastructure for the Semantic Web. In: International conference on ontologies, databases and applications of semantics (ODBASE-2003). Lecture notes in computer science, vol 2888. Springer, Berlin, pp 671–688Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.KRDB Research CenterFree University of Bozen-BolzanoBolzanoItaly
  2. 2.Department of Computer ScienceStony Brook UniversityStony BrookUSA

Personalised recommendations