Advertisement

Analytical applications using spectrophotometric technique for the determination of uranium(VI), samarium(III) and cerium(III) by new organic reagent

  • Khaled Elgendy
  • Akram El-didamony
  • Badr Abd El-wahaabEmail author
Original Paper
  • 6 Downloads

Abstract

New, simple and rapid spectrophotometric methods were described for the micro-determination of some rare earth metal ions uranium(VI), samarium(III) and cerium(III) using a new synthesized sulfacetamide azo dye derivative [2-((4-(N-acetylsulfamoyl)phenyl)diazenyl)-3,4,5-trihydroxybenzoic acid] (APDB). The new reagent was reacted with the three rare earth metal ions forming colored complexes at 500, 535 and 540 nm for U(VI), Sm(III) and Ce(III), respectively. The complexes were formed in alkaline medium using borate buffer at pH = 9 for U(VI) and Sm(III) and at pH = 8 for Ce(III). The absorbance of U(VI) and Sm(III)-APDB complexes was enhanced in the presence of CTAB as a cationic micellar media while that of Ce(III)-APDB complex was improved by using aerosol GPG surfactant. The proposed methods were also improved by using acetone and DMF as organic solvents for only U(VI) and Sm(III)-APDB complexes, respectively. The three metal ions complexes were formed by 1:2 (metal:ligand) ratio. Beer’s law was followed over the concentration range of 5–80, 10–160 and 10–80 µg mL−1 for U(VI), Sm(III) and Ce(III), respectively. The proposed methods showed 0.8910, 2.454 and 2.750 µg mL−1 limit of detection and 2.700, 7.436 and 8.335 µg mL−1 quantification limit (LOQ) for U(VI), Sm(III) and Ce(III) complexes, respectively. The relative standard deviation was also calculated to be 0.00899, 0.00461 and 0.0180 for U(VI), Sm(III) and Ce(III) complexes, respectively. The interference effect of various diverse ions was also investigated. The proposed methods were successfully applied for the determination micro-amounts of the selected metal ions in some industrial, biological and plant samples.

Keywords

Spectrophotometry U(VI) Sm(III) Ce(III) Beer’s law Industrial and plant samples 

References

  1. 1.
    Y. Li, H. Yu, S. Zheng, Y. Miao, S. Yin, P. Li, Y. Bian, Int. J. Environ. Res. Public Health 13, 1–10 (2016)CrossRefGoogle Scholar
  2. 2.
    E. Zolfonoun, S.R. Yousef, J. Braz. Chem. Soc. 27, 2348–2353 (2016)Google Scholar
  3. 3.
    M. Mehmood, J. Ecol. Nat. Resour. 2, 1–6 (2018)Google Scholar
  4. 4.
    M. Makombe, C.V. Horst, B. Silwana, E. Iwuoha, V. Somerset, Environments 5, 1–10 (2018)CrossRefGoogle Scholar
  5. 5.
    S.H. Ali, Resources 3, 123–134 (2014)CrossRefGoogle Scholar
  6. 6.
    I.R. Shyam, I.C. Aery, J. Soil Sci. Plant Nutr. 12, 1–14 (2012)CrossRefGoogle Scholar
  7. 7.
    K.A. Rabie, S.M. Abdel-Wahaab, K.F. Mahmoud, A.E.M. Hussein, A.I.L. Abd El-Fatah, Arab J. Nucl. Sci. Appl. 46, 30–42 (2013)Google Scholar
  8. 8.
    S. Kayasth, K. Swain, J. Radioanal. Nucl. Chem. 262, 191–194 (2004)CrossRefGoogle Scholar
  9. 9.
    B.S.S. Kiran, S. Raja, Der Pharmacia Lettre 9, 44–54 (2017)Google Scholar
  10. 10.
    K. Nakayama, T. Nakamura, Anal. Sci. 21, 815–822 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    S. Shamsipur, M. Mohammadi, A. Taherpour, V. Lippolis, R. Montis, Sensors Actuators B Chem. 192, 378–385 (2014)CrossRefGoogle Scholar
  12. 12.
    M. Javanbakht, H. Khoshsafar, M.R. Ganjali, P. Norouzi, M. Adib, Electroanalysis 21, 1605–1610 (2009)CrossRefGoogle Scholar
  13. 13.
    C. Karadaş, D. Kara, Water Air Soil Pollut. 225, 1–10 (2014)Google Scholar
  14. 14.
    X.J. Liu, Z.F. Fan, Chromatographia 70, 481–487 (2009)CrossRefGoogle Scholar
  15. 15.
    T.A. Ali, G.G. Mohamed, Sensors Actuators B Chem. 216, 542–550 (2015)CrossRefGoogle Scholar
  16. 16.
    T. Madrakian, A. Afkhami, A. Mousavi, Talanta 71, 610–614 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Lutfullah, F. Khan, N. Rahman, S.N.H. Azmi, J. Indian, Chem. Technol. 16, 437–441 (2019)Google Scholar
  18. 18.
    A.B. Upase, A.B. Zade, P.P. Kalbende, E J. Chem. 8, 1132–1141 (2011)CrossRefGoogle Scholar
  19. 19.
    M. Soylak, O. Turkoglu, Talanta 53, 125–129 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    H. Golmohammadi, A. Rashidi, S.J. Safdari, Chem. Chem. Technol. J. 6, 245–249 (2012)CrossRefGoogle Scholar
  21. 21.
    G. Khayatian, S. Hassanpoor, A.R.J. Azar, S. Mohebbi, J. Braz. Chem. Soc. 24, 1808–1817 (2013)Google Scholar
  22. 22.
    M. Swetha, R.R. Reddy, K.V. Reddy, Int. J. Sci. Res. Publ. 3, 1–5 (2013)Google Scholar
  23. 23.
    N. Jalbani, M. Soylak, J. Radioanal. Nucl. Chem. 301, 263–268 (2014)CrossRefGoogle Scholar
  24. 24.
    Z.F. Akl, J. Radioanal. Nucl. Chem. 308, 693–700 (2016)CrossRefGoogle Scholar
  25. 25.
    V. Veeranna, M.V.V. Vara Prasad, A. Jonnadula, Int. J. Adv. Res. Chem. Sci. 3, 1–6 (2016)Google Scholar
  26. 26.
    O.A. Elhefnawy, A.A. Elabd, J. Arab, Nucl. Sci. Appl. 51, 121–129 (2018)Google Scholar
  27. 27.
    S.R. Gadzhieva, F.E. Guseinov, F.M. Chyragov, J. Anal. Chem. 60, 819–821 (2005)CrossRefGoogle Scholar
  28. 28.
    A. Mathew, A.V.K. Kumar, P. Shyamala, A. Satyanarayana, I.M. Rao, J. Indian, Chem. Technol. 19, 331–336 (2012)Google Scholar
  29. 29.
    P. Ratre, D. Kumar, Am. Int. J. Res. Formal. Appl. Nat. Sci. 3, 110–118 (2013)Google Scholar
  30. 30.
    J. Uhrovcik, J. Lesny, Acta Tech. Jaurinensis 7, 62–70 (2014)Google Scholar
  31. 31.
    S. Ganesh, N.K. Pandey, Int. J. Adv. Chem. 7, 26–34 (2019)Google Scholar
  32. 32.
    S.P. Masti, J. Seetharamappa, M.B. Melwanki, N. Motohashi, Anal. Sci. 18, 167–169 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    I.P. Kostova, I.I. Manolov, M.K. Radulova, Acta Pharm. 54, 37–47 (2004)PubMedPubMedCentralGoogle Scholar
  34. 34.
    I.S. Ahmed, A.S. Amin, Y.M. Issa, Spectrochim. Acta A 64, 246–250 (2006)CrossRefGoogle Scholar
  35. 35.
    L. Yuying, W. Ping, Rare Met. 28, 5–8 (2009)CrossRefGoogle Scholar
  36. 36.
    R.S. Lokhande, S. Kulkarni, S. Pitale, S.K. Patil, S.P. Janwadkar, Int. J. Pharm. Biol. Res. 2, 161–164 (2011)Google Scholar
  37. 37.
    A.M. Abdulla, O.I. Haidar, J. Nat. Sci. Res. 5, 132–137 (2015)Google Scholar
  38. 38.
    M.H. Khan, K. Liaqat, M. Hafeez, S. Fazil, M. Riaz, S. Afr. J. Chem. 68, 69–75 (2015)CrossRefGoogle Scholar
  39. 39.
    S.K. Jawad, M.O. Kadhim, A.S. Alwan, J. Chem. Pharm. Res. 9, 85–94 (2017)Google Scholar
  40. 40.
    H.T.S. Britton, Hydrogen Ions, vol. 28, 4th edn. (Chapman and Hall, London, 1952), pp. 359–364Google Scholar
  41. 41.
    V.E. Bower, R.G. Bates, J. Res. Natl. Bur. Stand. 55, 197–202 (1955)CrossRefGoogle Scholar
  42. 42.
    J.U. Lurie, Handbook of Analytical Chemistry, 2nd edn. (Mir Publishers, Moscow, 1978)Google Scholar
  43. 43.
    R. Gurkan, H.I. Ulusoy, M. Akcay, Eclet. Quim. 36, 37–46 (2011)CrossRefGoogle Scholar
  44. 44.
    S.P. Sangal, B.V. Agarwala, A.K. Dey, Mikrochim. Acta 3, 660–663 (1969)CrossRefGoogle Scholar
  45. 45.
    K. Tonosaki, M. Otomo, Bull. Chem. Soc. Jpn. 35, 1683–1686 (1962)CrossRefGoogle Scholar
  46. 46.
    K. Motojima, K. Lzawa, Anal. Chem. 36, 733–735 (1964)CrossRefGoogle Scholar
  47. 47.
    R. Pribil, Analytical Applications of EDTA and Related Compounds, vol. 52, 1st edn. (Pergamon Press, Oxford, 1972), pp. 158–337Google Scholar
  48. 48.
    W.H. El-Shwiniy, W.A. Zordok, Spectrochim. Acta A 199, 290–300 (2018)CrossRefGoogle Scholar
  49. 49.
    S.M. Abd El-Hamid, S.A. Sadeek, W.A. Zordok, W.H. El-Shwiniy, J. Mol. Struct. 1176, 422–433 (2019)CrossRefGoogle Scholar
  50. 50.
    F.M. Ahmed, S.A. Sadeek, W.H. El-Shwiniy, Russ. J. Gen. Chem. 89, 1874–1883 (2019)CrossRefGoogle Scholar
  51. 51.
    P. Job, Anal. Chim. Acta 9, 113–119 (1928)Google Scholar
  52. 52.
    S.A. Tirmizi, F.H. Wattoo, M.H.S. Wattoo, S. Sarwar, A.N. Memon, A.B. Ghangro, Arab. J. Chem. 5, 309–314 (2012)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2020

Authors and Affiliations

  • Khaled Elgendy
    • 1
  • Akram El-didamony
    • 1
  • Badr Abd El-wahaab
    • 1
    Email author
  1. 1.Faculty of Science, Chemistry DepartmentZagazig UniversityZagazigEgypt

Personalised recommendations