Structural chemistry and anti-inflammatory activity of flexible/restricted phenyl dimers

  • Ved Prakash SinghEmail author
  • Jayanta Dowarah
  • Ashish Kumar TewariEmail author
  • David K. Geiger
Original Paper


Three phenyl dimer compounds, namely 3,3′-Diformyldiphenoxyethane (C16H14O4) (1), 1-(4-[2-(4-Acetyl-phenoxy)-ethoxy]-phenyl)-ethanone (C17H16N2O3) (2), 1-{4-[2-(4-Acetyl-phenoxymethyl)-benzyloxy]-phenyl}-ethanone (C24H22O4) (3), were obtained and fully characterized, including their crystal structure determinations. The structural properties of two compounds 4, 4-(ethylenedioxy)dibenzaldehyde) (C16H14O4) (Tewari et al. Acta Cryst. E63:o1930, 2007) [1] (4) and 4-(2-Phenoxy-ethoxy)-benzaldehyde (C15H14O3) (Valgera et al. CCDC 710835, 2016) [2] (5) are discussed with the role of the substituent in crystal packing. In vivo, anti-inflammatory activities of all compounds were studied on Wistar strain albino rats. All the compounds exhibited anti-inflammatory activity except 5. Compounds 1, 2, 4 have shown moderate-to-intermediate effects on inhibitory properties. Compound (3) with restricted rotation in the compound-like SC-558 drug was shown to possess good inhibitory properties at 180 min. In silico analysis was performed and compared with experimental in vivo results.


Weak interactions Anti-inflammatory activity Docking Interaction energy 



Department of Chemistry, Banaras Hindu University, Varanasi, India, is acknowledged for departmental facilities. Department of Chemistry, Mizoram University, Aizawl, Mizoram, India, is acknowledged the other infrastructure facilities. SAIF, Gauhati University, Guwahati, India, is acknowledged for SCXRD facilities. Institute of Medical Sciences, B.H.U, Varanasi, India, is acknowledged for providing the space and facilities to perform biological analysis. Jayanta Dowarah acknowledges DST, New Delhi, for DST-inspired fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13738_2020_1853_MOESM1_ESM.docx (4 mb)
Supplementary material 1 (DOCX 4100 kb)
13738_2020_1853_MOESM2_ESM.docx (2.6 mb)
Supplementary material 2 (DOCX 2635 kb)


  1. 1.
    A.K. Tewari, V.P. Singh, M.C. Puerta, P. Valerga, Acta Cryst. E63, o1930 (2007)Google Scholar
  2. 2.
    P. Valerga, M.C. Puerta, CCDC 710835: Experimental Crystal Structure Determination (2016).
  3. 3.
    D.P. Marriott, I.G. Dougall, P. Meghani, Y.J. Liu, D.R. Flower, J. Med. Chem. 42, 3210 (1999)CrossRefGoogle Scholar
  4. 4.
    C.A. Hunter, Chem. Soc. Rev. 23, 101 (1994)CrossRefGoogle Scholar
  5. 5.
    R. Glaser, L.R. Dendi, N. Knotts, C.L. Barnes, Cryst. Growth Des. 3, 291 (2003)CrossRefGoogle Scholar
  6. 6.
    A.K. Tewari, P. Srivastava, M.C. Puerta, P. Valerga, J. Mol. Struct. 921, 251 (2009)CrossRefGoogle Scholar
  7. 7.
    R. Dubey, A.K. Tewari, K. Ravikumar, B. Sridhar, J. Chem. Crystallogr. 41, 886 (2011)CrossRefGoogle Scholar
  8. 8.
    P. Srivastava, V.P. Singh, A.K. Tewari, C. Puerta, P. Valerga, J. Mol. Struct. 1007, 20 (2012)CrossRefGoogle Scholar
  9. 9.
    M.R. Yadav, S.T. Shirude, A. Parmar, R. Balaraman, R. Giridhar, Chem. Heterocycl. Compd. 42, 8 (2006)CrossRefGoogle Scholar
  10. 10.
    K.R.A. Abdellatif, M.A. Chowdhury, Y. Dong, D. Das, G. Yu, C.A. Velázquez, M.R. Suresh, E.E. Knaus, Bioorg. Med. Chem. Lett. 19(11), 3014 (2009)CrossRefGoogle Scholar
  11. 11.
    M.H. Yang, K.D. Yoon, Y.W. Chin, J.H. Park, J. Kim, Bioorg. Med. Chem. 17(7), 2689 (2009)CrossRefGoogle Scholar
  12. 12.
    S.K. Rai, S. Khanam, R.S. Khanna, A.K. Tewari, Cryst. Growth Des. 15, 1430 (2015)CrossRefGoogle Scholar
  13. 13.
    A. Zarghi, S. Arfaei, Iran. J. Pharm. Res. 10(4), 655 (2011)PubMedPubMedCentralGoogle Scholar
  14. 14.
    A. Palomer, F. Cabre, J. Pascual, J. Campos, M.A. Trujillo, A. Entrena, M.A. Gallo, L. García, D. Mauleón, A. Espinosa, J. Med. Chem. 45(7), 1402 (2002)CrossRefGoogle Scholar
  15. 15.
    M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka and M. A. Spackman, CrystalExplorer17. (2017) Accessed 2 Apr 2019
  16. 16.
    S.F. Boys, F. Bernardi, Mol. Phys. 19, 553 (1970)CrossRefGoogle Scholar
  17. 17.
    M.J. Turner, S. Grabowsky, D. Jayatilaka, M.A. Spackman, J. Phys. Chem. Lett. 5, 4249 (2014)CrossRefGoogle Scholar
  18. 18.
    C.F. Mackenzie, P.R. Spackman, D. Jayatilaka, M.A. Spackman, IUCrJ 4, 575 (2017)CrossRefGoogle Scholar
  19. 19.
    F.H. Allen, D.G. Watson, L. Brammer, A.G. Orpen, R. Taylor, in International Tables for Crystallography, 3rd edn., ed. by E. Prince (Springer, Heidelberg, 2004), pp. 790–811Google Scholar
  20. 20.
    A.L. Spek, Acta Cryst. D65, 148 (2009)Google Scholar
  21. 21.
    Bruker, APEX2, SAINT and SADABS (Bruker AXS Inc., Madison, 2015)Google Scholar
  22. 22.
    G.M. Sheldrick, Acta Cryst. A71, 3 (2015)Google Scholar
  23. 23.
    S.P. Westrip, J. Appl. Cryst. 43, 920 (2010)CrossRefGoogle Scholar
  24. 24.
    R.G. Kurumbail, A.M. Stevens, J.K. Gierse, J.J. McDonald, R.A. Stegeman, J.Y. Pak, D. Glidehans, J.M. Miyashiro, T.D. Penning, K. Seibert, P.C. Isakson, W.C. Stallings, Nature 384, 644 (1996)CrossRefGoogle Scholar
  25. 25.
    C.A. Wintar, E.A. Risley, G.W. Nuss, Proc. Soc. Exp. Biol. 111, 544 (1962)CrossRefGoogle Scholar
  26. 26.
    A.K. Tewari, P. Srivastawa, V.P. Singh, A. Singh, R.K. Goel, C.G. Mohan, Chem. Pharm. Bull. 58(5), 634 (2010)CrossRefGoogle Scholar
  27. 27.
    R. Thakuria, N.K. Nath, B.K. Saha, Cryst. Growth Des. 19, 523 (2019)CrossRefGoogle Scholar
  28. 28.
    A. Banerjee, A. Saha, B.K. Saha, Cryst. Growth Des. 19, 2245 (2019)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2020

Authors and Affiliations

  1. 1.Department of Chemistry, School of Physical SciencesMizoram UniversityAizawlIndia
  2. 2.Department of Chemistry, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  3. 3.Department of Chemistry, College of GenescoState University of New YorkGenescoUSA

Personalised recommendations