The correlation between ROS generation and LPO process as the function of methylparaben concentrations during hemoglobin fructation


In this study, we focused on the interference of methylparaben (MP), as the most commonly used paraben, on hemoglobin (Hb) fructation, generating reactive oxygen species (ROS) and resulting lipid peroxidation (LPO). We showed the enhancement of ROS generation and heme degradation during hemoglobin fructation in the presence of MP using some biophysical techniques such as chemiluminescence and fluorescence spectroscopies, respectively. Lipid peroxidation was observed using thiobarbituric acid reactive substances (TBARS) assay, which correlated with ROS production. Also, the results showed that by increasing the levels of fructation, especially in diabetic-like groups, ROS production was increased augmenting the intensity of LPO. This was accompanied by the elevation of malondialdehyde (MDA) production. Thus, MP has an adverse impact on hemoglobin by enhancing advance glycation end products (AGEs) and ROS generation upon its fructation, which results in MDA generation through enhanced LPO. This kind of research emphasises the importance of preservatives’ application revision especially methylparaben in various industries and the necessity of special attention to the consumption of these products by diabetic patients.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    R. Golden, J. Gandy, G. Vollmer, A review of the endocrine activity of parabens and implications for potential risks to human health. Crit. Rev. Toxicol. 35(5), 435–458 (2005)

  2. 2.

    S. Pan, Y. Chaoshen, T. Abderrahmane, R.A. Ruthann, J.M. Ackerman, P. Yaswen, C.D. Vulpe, D.C. Leitman, Parabens and human epidermal growth factor receptor ligand cross-talk in breast cancer cells. Environ. Health Perspect. 124(5), 563–569 (2015)

  3. 3.

    J.R. Costa, M.S. Campos, R.F. Lima, L.S. Gomes, M.R. Marques, S.R. Taboga, M.F. Biancardi, P.V.A. Brito, F.C.A. Santos, Endocrine-disrupting effects of methylparaben on the adult gerbil prostate. Environ. Toxicol. 32(6), 1801–1812 (2017)

  4. 4.

    L. Sun, T. Yu, J. Guo, Z. Zhang, Y. Hu, X. Xiao, L. Sai, The estrogenicity of methylparaben and ethylparaben at doses close to the acceptable daily intake in immature Sprague–Dawley rats. Sci. Rep. 6, 25173 (2016)

  5. 5.

    V.Y. Dambal, K.P. Selvan, C. Lite, S. Barathi, W. Santosh, Developmental toxicity and induction of vitellogenin in embryo-larval stages of zebrafish (Danio rerio) exposed to methyl Paraben. Ecotoxicol. Environ. Saf. 141, 113–118 (2017)

  6. 6.

    N. Majewska, I. Zaręba, A. Surażyński, A. Galicka, Methylparaben-induced decrease in collagen production and viability of cultured human dermal fibroblasts. J. Appl. Toxicol. 37(9), 1117–1124 (2017)

  7. 7.

    K.M. Naik, S.T. Nandibewoor, Investigation into the interaction of methylparaben and erythromycin with human serum albumin using multi-spectroscopic methods. Luminescence 31(2), 433–441 (2016)

  8. 8.

    X. Ye, A.M. Bishop, L.L. Needham, A.M. Calafat, Automated on-line column-switching HPLC-MS/MS method with peak focusing for measuring parabens, triclosan, and other environmental phenols in human milk. Anal. Chim. Acta 622(1–2), 150–156 (2008)

  9. 9.

    M. Goodarzi, A.A. Moosavi-Movahedi, M. Habibi-Rezaei, M. Shourian, H. Ghourchian, F. Ahmad, N. Sheibani, Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 130, 561–567 (2014)

  10. 10.

    S. Kikuchi, K. Shinpo, M. Takeuchi, S. Yamagishi, Z. Makita, N. Sasaki, K. Tashiro, Glycation—a sweet tempter for neuronal death. Brain Res. Rev. 41(2–3), 306–323 (2003)

  11. 11.

    M. Bohlooli, A.A. Saboury, F. Taghavi, M. Habibi-Rezaei, S. Sarvari, A.A. Moosavi-Movahedi, Fasting at a glance: fasting reduces the binding between sugar and protein; new insights into diabetic complications. Biomacromol. J. 2(2), 93–96 (2016)

  12. 12.

    S.P. Wolff, Z.Y. Jiang, J.V. Hunt, Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic. Biol. Med. 10(5), 339–352 (1991)

  13. 13.

    C.J. Mullarkey, D. Edelstein, M. Brownlee, Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem. Biophys. Res. Commun. 173(3), 932–939 (1990)

  14. 14.

    N. Sattarahmady, A.A. Moosavi-Movahedi, M. Habibi-Rezaei, S. Ahmadian, A.A. Saboury, H. Heli, N. Sheibani, Detergency effects of nanofibrillar amyloid formation on glycation of human serum albumin. Carbohydr. Res. 343(13), 2229–2234 (2008)

  15. 15.

    H.M. Semchyshyn, J. Miedzobrodzki, M.M. Bayliak, L.M. Lozinska, B.V. Homza, Fructose compared with glucose is more a potent glycoxidation agent in vitro, but not under carbohydrate-induced stress in vivo: potential role of antioxidant and antiglycation enzymes. Carbohydr. Res. 384, 61–69 (2014)

  16. 16.

    R. Ghosh Moulick, J. Bhattacharya, S. Roy, S. Basak, A.K. Dasgupta, Compensatory secondary structure alterations in protein glycation. Biochim. Biophys. Acta (BBA) Proteins Proteomics 1774(2), 233–242 (2007)

  17. 17.

    A. Rossi-Fanelli, E. Antonini, A. Caputo, Studies on the relations between molecular and functional properties of hemoglobin. J. Biol. Chem. 236, 391–396 (1961)

  18. 18.

    M. Bakhti, M. Habibi-Rezaei, A.A. Moosavi-Movahedi, M.R. Khazaei, Consequential alterations in haemoglobin structure upon glycation with fructose: prevention by acetylsalicylic acid. J. Biochem. 141(6), 827–833 (2007)

  19. 19.

    J. Šubert, O. Fars, M. Marečková, Stability evaluation of methylparaben and propylparaben in their solution Aqua conservans using HPLC. Sci. Pharm. 75(4), 171–178 (2007)

  20. 20.

    N. Vigneshwaran, G. Bijukumar, N. Karmakar, S. Anand, A. Misra, Autofluorescence characterization of advanced glycation end products of hemoglobin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 61(1–2), 163–170 (2005)

  21. 21.

    M. Habibi Rezaei, M. Bakhti, A.A. Moosavi-Movahedi, S.J. Zargar, H. Ghorchian, Fructation induces hemin degradation in met-hemoglobin. Biomacromol. J. 1(2), 212–219 (2015)

  22. 22.

    M. Shourian, H. Tavakoli, H. Ghourchian, H.A. Rafiee-Pour, Detection and dosimetry of gamma ray emitted from thallium-201 and technetium-99 m based on chemiluminescence technique. Radiat. Meas. 45(8), 906–910 (2010)

  23. 23.

    J. Stocks, T.L. Dormandy, The autoxidation of human red cell lipids induced by hydrogen peroxide. Br. J. Haematol. 20(1), 95–111 (1971)

  24. 24.

    T.F. Slater, Overview of methods used for detecting lipid peroxidation. Methods Enzymol. 105, 283–293 (1984)

  25. 25.

    R. Dolhofer, O.H. Wieland, In vitro glycosylation of hemoglobins by different sugars and sugar phosphates. FEBS Lett. 85(1), 86–90 (1978)

  26. 26.

    C.G. Schalkwijk, C.D. Stehouwer, V.W. van Hinsbergh, Fructose mediated non-enzymatic glycation: sweet coupling or bad modification. Diabetes/Metab. Res. Rev. 20(5), 369–382 (2004)

  27. 27.

    J.V. Hunt, R.T. Dean, S.P. Wolff, Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem. J. 256(1), 205–212 (1988)

  28. 28.

    H. Esterbauer, K.H. Cheeseman, Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 186, 407–421 (1990)

  29. 29.

    S.K. Jain, Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. J. Biol. Chem. 264(35), 21340–21345 (1989)

  30. 30.

    M. Inouye, H. Hashimoto, T. Mio, K. Sumino, Levels of lipid peroxidation product and glycated hemoglobin A1c in the erythrocytes of diabetic patients. Clin. Chim. Acta 276(2), 163–172 (1998)

  31. 31.

    E. Nagababu, J.M. Rifkind, Formation of fluorescent heme degradation products during the oxidation of hemoglobin by hydrogen peroxide. Biochem. Biophys. Res. Commun. 247(3), 592–596 (1998)

  32. 32.

    D. Pugazhendhi, G.S. Pope, P.D. Darbre, Oestrogenic activity of p-hydroxybenzoic acid (common metabolite of paraben esters) and methylparaben in human breast cancer cell lines. J. Appl. Toxicol. 25(4), 301–309 (2005)

  33. 33.

    P. Hu, H. Overby, E. Heal, S. Wang, J. Chen, C.L. Shen, L. Zhao, Methylparaben and butylparaben alter multipotent mesenchymal stem cell fates towards adipocyte lineage. Toxicol. Appl. Pharmacol. 329, 48–57 (2017)

  34. 34.

    M. Fisher, S. MacPherson, J.M. Braun, R. Hauser, M. Walker, M. Feeley, T.E. Arbuckle, Paraben concentrations in maternal urine and breast milk and its association with personal care product use. Environ. Sci. Technol. 51(7), 4009–4017 (2017)

  35. 35.

    S. Nooshi-Nedamani, M. Habibi-Rezaei, A. Farzadfard, A.A. Moosavi-Movahedi, Intensification of serum albumin amyloidogenesis by a glycation-peroxidation loop (GPL). Arch. Biochem. Biophys. 668, 54–60 (2019)

Download references


The support of University of Tehran, Center for International Scientific Studies and Collaborations (CISSC)-Ministry of Science, Research and Technology, Iran National Science Foundation (INSF), UNESCO Chair on Interdisciplinary Research in Diabetes, and Iran Society of Biophysical Chemistry is gratefully acknowledged.

Author information

Correspondence to M. Habibi-Rezaei or A. A. Moosavi-Movahedi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pishkari, N., Habibi-Rezaei, M., Taghavi, F. et al. The correlation between ROS generation and LPO process as the function of methylparaben concentrations during hemoglobin fructation. J IRAN CHEM SOC (2020).

Download citation


  • Fructation
  • Hemoglobin (Hb)
  • Methylparaben (MP)
  • Reactive oxygen species (ROS)
  • Lipid peroxidation (LPO)