Advertisement

Optimization and development of drug loading in hydroxyapatite–polyvinyl alcohol nanocomposites via response surface modeling approach

  • 17 Accesses

Abstract

In the present study, parameters affecting the particle size and drug loading of curcumin-loaded hydroxyapatite–polyvinyl alcohol (HAp-PVA) nanocomposites were investigated and optimized. The nanocomposites were synthesized by using chemical precipitation technique, and curcumin was subsequently incorporated into the prepared nanocomposites through an impregnation methodology. Dynamic light scattering and scanning electron microscopy were applied for the evaluation of HAp-PVA nanocomposites. Besides, response surface methodology (carried out using Minitab 16) assessed the correlation between design parameters and experimental data. The independent variables selected in Box–Behnken design were time of milling (X1), polyvinyl alcohol (PVA), concentration (X2) and the concentration of drug (X3), while particle size and drug loading were considered as the responses. The size of nanoparticles ranged from 71 to 123 nm, and drug loading varied between 8.9 and 61.1%. Contour plots and surface plots were benefitted in order to realize the combined effects of different variables. Optimized formulation using response optimizer design demonstrated the particle size of 95 nm and drug loading of 61.24%. From the acquired results, it was concluded that the chemical precipitation method accompanied by the Box–Behnken experimental design approach could be successfully applied to optimize the nanoformulation of curcumin-encapsulated HAp-PVA nanocomposites.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    H. Derakhshankhah, A. Saboury, R. Bazl, H. Tajmir-Riahi, M. Falahati, D. Ajloo, H. Mansoori-Torshizi, A. Divsalar, A. Hekmat, A. Moosavi-Movahedi, J. Iran. Chem. Soc. 9, 737 (2012)

  2. 2.

    H. Derakhshankhah, A. Saboury, A. Divsalar, H. Mansouri-Torshizi, I. Bamery, D. Ajloo, A. Moosavi-Movahedi, R. Hosseinzadeh, M. Ganjali, H. Ilkhani, J. Iran. Chem. Soc. 11, 1381 (2014)

  3. 3.

    R. Bazl, M.R. Ganjali, H. Derakhshankhah, A.A. Saboury, M. Amanlou, P. Norouzi, Med. Chem. Res. 22, 5453 (2013)

  4. 4.

    S. Taranejoo, S. Monemian, M. Moghri, H. Derakhshankhah, J. Appl. Polym. Sci. 131, 39648 (2014)

  5. 5.

    K. Seidi, H.A. Neubauer, R. Moriggl, R. Jahanban-Esfahlan, T. Javaheri, J. Control. Release 275, 142–161 (2018)

  6. 6.

    B. Palazzo, M. Iafisco, M. Laforgia, N. Margiotta, G. Natile, C.L. Bianchi, D. Walsh, S. Mann, N. Roveri, Adv. Funct. Mater. 17, 2180 (2007)

  7. 7.

    N. Ignjatović, V. Uskoković, Z. Ajduković, D. Uskoković, Mater. Sci. Eng. C 33, 943 (2013)

  8. 8.

    M. Ferraz, F. Monteiro, C. Manuel, J. Appl. Biomater. Biomech. 2, 74 (2004)

  9. 9.

    A.K. Nayak, Int. J. ChemTech Res. 2, 903 (2004)

  10. 10.

    J. Lou, W. Hu, R. Tian, H. Zhang, Y. Jia, J. Zhang, L. Zhang, Int. J. Nanomed. 9, 2517 (2014)

  11. 11.

    R. Raviadaran, D. Chandran, L.H. Shin, S. Manickam, LWT 96, 58 (2018)

  12. 12.

    T.F. Alves, M.V. Chaud, D. Grotto, A.F. Jozala, R. Pandit, M. Rai, C.A. dos Santos, AAPS PharmSciTech 19, 225 (2018)

  13. 13.

    A. Homayouni, M. Sohrabi, M. Amini, J. Varshosaz, A. Nokhodchi, Mater. Sci. Eng. C 98, 185 (2019)

  14. 14.

    D. Baş, İ.H. Boyacı, J. Food Eng. 78, 836 (2007)

  15. 15.

    H.J. Seltman, Experimental Design and Analysis (2018)

  16. 16.

    M. Roosta, M. Ghaedi, A. Daneshfar, R. Sahraei, A. Asghari, Ultrason. Sonochem. 21, 242 (2014)

  17. 17.

    J. Hao, F. Wang, X. Wang, D. Zhang, Y. Bi, Y. Gao, X. Zhao, Q. Zhang, Eur. J. Pharm. Sci. 47, 497 (2012)

  18. 18.

    J. Hao, X. Fang, Y. Zhou, J. Wang, F. Guo, F. Li, X. Peng, Int. J. Nanomed. 6, 683 (2011)

  19. 19.

    M. Kavitha, R. Subramanian, K.S. Vinoth, R. Narayanan, G. Venkatesh, N. Esakkiraja, Powder Technol. 271, 167 (2015)

  20. 20.

    M. Sadat-Shojai, M.-T. Khorasani, A. Jamshidi, J. Cryst. Growth 361, 73 (2012)

  21. 21.

    N. Aslan, Y. Cebeci, Fuel 86, 90 (2007)

  22. 22.

    S.C. Ferreira, R. Bruns, H. Ferreira, G. Matos, J. David, G. Brandao, E.P. da Silva, L. Portugal, P. Dos Reis, A. Souza, Anal. Chim. Acta 597, 179 (2007)

  23. 23.

    S. Maleki Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.-H. Zarrintan, K. Adibkia, Artif. Cells Nanomed. Biotechnol. 44, 1475 (2016)

  24. 24.

    A. Ali, S. Ali, M. Aqil, S.S. Imam, A. Ahad, A. Qadir, J. Drug Deliv. Sci. Technol. 52, 713 (2019)

  25. 25.

    R.K. Averineni, G.V. Shavi, A.K. Gurram, P.B. Deshpande, K. Arumugam, N. Maliyakkal, S.R. Meka, U. Nayanabhirama, Bull. Mater. Sci. 35, 319 (2012)

  26. 26.

    E. Abdel-Aal, A. El-Midany, H. El-Shall, Mater. Chem. Phys. 112, 202 (2008)

  27. 27.

    T.V. Safronova, V.I. Putlyaev, A.V. Belyakov, M.A. Shekhirev, MRS Proceedings (Cambridge Univ Press, Cambridge, 2005)

  28. 28.

    E. Ghasemian, A. Vatanara, A.R. Najafabadi, M.R. Rouini, K. Gilani, M. Darabi, DARU J. Pharm. Sci. 21, 68 (2013)

Download references

Acknowledgements

The authors would like to thank the Kermanshah University of Medical Sciences, for the financial support of the study.

Author information

Correspondence to Vali ollah Kashani or Hossein Derakhshankhah.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jafari, S., Saboury, A.A., Tajerzadeh, H. et al. Optimization and development of drug loading in hydroxyapatite–polyvinyl alcohol nanocomposites via response surface modeling approach. J IRAN CHEM SOC (2020). https://doi.org/10.1007/s13738-019-01841-w

Download citation

Keywords

  • Response surface methodology
  • Box–Behnken design
  • Hydroxyapatite
  • Nanocomposite
  • Chemical precipitation
  • Curcumin