Orthogonal array design optimisation of an in situ ionic liquid dispersive liquid–liquid microextraction for the detection of phenol and endocrine-disrupting phenols in aqueous samples

  • I. NowakEmail author
  • I. Rykowska
  • J. Ziemblińska-Bernart
Original Paper


In this paper, a dispersive liquid–liquid microextraction (DLLME) based on the application of in situ ionic liquids (in situ ionic liquid DLLME) was developed for preconcentration and determination of trace amount of phenol and endocrine-disrupting phenols in aqueous samples. The experimental parameters of an in situ ionic liquid DLLME method were investigated and optimised using an orthogonal array design. Several factors affecting extraction efficiency, including percentage concentration of the ionic liquid, the ratio of ionic liquid to the ion exchanger, extraction time as well as centrifugation time, were investigated and optimised. Under the optimal conditions, percentage concentration of the ionic liquid of 5%, the ratio of ionic liquid to the ion exchanger of 1–2, the extraction time of 5 min and centrifugation time of 1 min, the method affords satisfactory recoveries in the range of 99–100%. Consistent repeatability (RSD ≤ 5%) with satisfactory linearity (0.9993 ≥ r2 ≤ 0.9999) of results illustrated a good performance of the present method. The method was applied to the determination of endocrine-disrupting phenols in real seawater samples. The relative recovery of spiked, natural seawater samples was higher than 97%.


Endocrine-disrupting phenols In situ IL-DLLME Orthogonal array design Seawater samples 


  1. 1.
    M. Rezaee, Y. Assadi, M.R.M. Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, Determination of organic compounds in water using dispersive liquid–liquid microextraction. J. Chromatogr. A 1116, 1–9 (2006)PubMedCrossRefGoogle Scholar
  2. 2.
    S. Dadfarnia, A.M.H. Shabani, Recent development in liquid phase microextraction for determination of trace level concentration of metals—a review. Anal. Chim. Acta 658, 107–119 (2010)PubMedCrossRefGoogle Scholar
  3. 3.
    A.V. Herrera-Herrera, M. Asensio-Ramos, J. Hernández-Borges, M.A. Rodríguez-Delgado, Dispersive liquid–liquid microextraction for determination of organic analytes. Trends Anal. Chem. 29, 728–751 (2010)CrossRefGoogle Scholar
  4. 4.
    M. Rezaee, Y. Yamini, M. Faraji, Evolution of dispersive liquid–liquid microextraction method. J. Chromatogr. A 1217, 2342–2357 (2010)PubMedCrossRefGoogle Scholar
  5. 5.
    A. Zgola-Grzeskowiak, T. Grzeskowiak, Dispersive liquid–liquid microextraction. Trends Anal. Chem. 30, 1382–1399 (2011)CrossRefGoogle Scholar
  6. 6.
    V. Andruch, I.S. Balogh, L. Kocúrová, J. Šandrejová, Five years of dispersive liquid–liquid microextraction. Appl. Spectrosc. Rev. 48(3), 161–259 (2013)CrossRefGoogle Scholar
  7. 7.
    C.B. Ojeda, F.S. Rojas, Separation and preconcentration by dispersive liquid–liquid microextraction procedure: a review. Chromatographia 74, 651–659 (2011)CrossRefGoogle Scholar
  8. 8.
    A.N. Anthemidis, K.I.G. Ioannou, Recent developments in homogeneous and dispersive liquid–liquid extraction for inorganic elements determination. A review. Talanta 80, 413–421 (2009)PubMedCrossRefGoogle Scholar
  9. 9.
    M. El-Shahawi, H. Al-Saidi, Dispersive liquid–liquid microextraction for chemical speciation and determination of ultra-trace concentrations of metal ions. Trends Anal. Chem. 44, 12–24 (2013)CrossRefGoogle Scholar
  10. 10.
    S. Berijani, Y. Assadi, M. Anbia, M.R.M. Hosseini, E. Aghaee, Dispersive liquid–liquid microextraction combined with gas chromatography- flame photometric detection. Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water. J. Chromatogr. A 1123, 1–9 (2006)PubMedCrossRefGoogle Scholar
  11. 11.
    R.R. Kozani, Y. Assadi, F. Shemirani, M.R.M. Hosseini, M.R. Jamali, Part-per-trillion determination of chlorobenzenes in water using dispersive liquid–liquid microextraction combined gas chromatography-electron capture detection. Talanta 72, 387–393 (2007)PubMedCrossRefGoogle Scholar
  12. 12.
    K. Farhadi, M.A. Farajzadeh, A.A. Matin, Liquid chromatographic determination of benomyl in water samples after dispersive liquid–liquid microextraction. J. Sep. Sci. 32, 2442–2447 (2009)PubMedCrossRefGoogle Scholar
  13. 13.
    H.R. Sobhi, A. Kashtiaray, H. Farahani, M. Javaheri, M.R. Ganjali, Quantitation of mononitrotoluenes in aquatic environment using dispersive liquid–liquid microextraction followed by gas chromatography-flame ionization detection. J. Hazard. Mater. 175, 279–283 (2010)PubMedCrossRefGoogle Scholar
  14. 14.
    N. Negreira, I. Rodríguez, E. Rubí, R. Cela, Dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry for the rapid and sensitive determination of UV filters in environmental water samples. Anal. Bioanal. Chem. 398, 995–1004 (2010)PubMedCrossRefGoogle Scholar
  15. 15.
    J. Martín, D. Camacho-Muñoz, J.L. Santos, I. Aparicio, E. Alonso, Determination of priority pollutants in aqueous samples by dispersive liquid–liquid microextraction. Anal. Chim. Acta 773, 60–67 (2013)PubMedCrossRefGoogle Scholar
  16. 16.
    L. Fariña, E. Boido, F. Carrau, E. Dellacassa, Determination of volatile phenols in red wines by dispersive liquid–liquid microextraction and gas chromatography–mass spectrometry detection. J. Chromatogr. A 1157, 46–50 (2007)PubMedCrossRefGoogle Scholar
  17. 17.
    L. Campone, A.L. Piccinelli, L. Rastrelli, Dispersive liquid–liquid microextraction combined with high-performance liquid chromatography-tandem mass spectrometry for the identification and the accurate quantification by isotope dilution assay of ochratoxin A in wine samples. Anal. Bioanal. Chem. 399, 1279–1286 (2011)PubMedCrossRefGoogle Scholar
  18. 18.
    N. Arroyo-Manzanares, L. Gámiz-Gracia, A.M. García-Campaña, Determination of ochratoxin A in wines by capillary liquid chromatography with laser induced fluorescence detection using dispersive liquid–liquid microextraction. Food Chem. 135, 368–372 (2012)PubMedCrossRefGoogle Scholar
  19. 19.
    L. Fu, X. Liu, J. Hu, X. Zhao, H. Wang, X. Wang, Application of dispersive liquid–liquid microextraction for the analysis of triazophos and carbaryl pesticides in water and fruit juice samples. Anal. Chim. Acta 632, 289–295 (2009)PubMedCrossRefGoogle Scholar
  20. 20.
    D. Moreno-González, L. Gámiz-Gracia, A.M. García-Campaña, Bosque-Sendra, Application of dispersive liquid–liquid microextraction for the analysis of triazophos and carbaryl pesticides in water and fruit juice samples. Anal. Bioanal. Chem. 400, 1329–1338 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    S. Zhang, X. Yang, X. Yin, C. Wang, Z. Wang, Dispersive liquid–liquid microextraction combined with sweeping micellar electrokinetic chromatography for the determination of some neonicotinoid insecticides in cucumber samples. Food Chem. 133, 544–550 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    S. Boonchiangma, W. Ngeontae, S. Srijaranai, Determination of six pyrethroid insecticides in fruit juice samples using dispersive liquid–liquid microextraction combined with high performance liquid chromatography. Talanta 88, 209–215 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    P. Viñas, M. Bravo-Bravo, I. López-García, M. Hernández-Córdoba, Quantification of β-carotene, retinol, retinyl acetate and retinyl palmitate in enriched fruit juices using dispersive liquid–liquid microextraction coupled to liquid chromatography with fluorescence detection and atmospheric pressure chemical ionizationmass spectrometry. J. Chromatogr. A 1275, 1–8 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    H. Chen, J. Ying, J. Huang, L. Liao, Dispersive liquid–liquid microextraction followed by high-performance liquid chromatography as an efficient and sensitive technique for simultaneous determination of chloramphenicol and thiamphenicol in honey. Anal. Chim. Acta 632, 80–85 (2009)PubMedCrossRefGoogle Scholar
  25. 25.
    C.K. Zacharis, I. Rotsias, P.G. Zachariadis, A. Zotos, Dispersive liquid–liquid microextraction for the determination of organochlorine pesticides residues in honey by gas chromatography-electron capture and ion trap mass spectrometric detection. Food Chem. 134, 1665–1672 (2012)PubMedCrossRefGoogle Scholar
  26. 26.
    N. Campillo, P. Viñas, G. Férez-Melgarejo, M. Hernández-Córdoba, Dispersive liquid–liquid microextraction for the determination of macrocyclic lactones in milk by liquid chromatography with diode array detection and atmospheric pressure chemical ionization ion-trap tandem mass spectrometry. J. Chromatogr. A 1282, 20–26 (2013)PubMedCrossRefGoogle Scholar
  27. 27.
    J. López-Darias, M. Germán-Hernández, V. Pino, A.M. Afonso, Dispersive liquid–liquid microextraction versus single-drop microextraction for the determination of several endocrine-disrupting phenols from seawaters. Talanta 80, 1611–1618 (2010)PubMedCrossRefGoogle Scholar
  28. 28.
    E. Yiantzi, E. Psillakis, K. Tyrovola, N. Kalogerakis, Vortex-assisted liquid–liquid microextraction of octylphenol, nonylphenol and bisphenol-A. Talanta 80, 2057–2062 (2010)PubMedCrossRefGoogle Scholar
  29. 29.
    L. Kocurova, I.S. Balogh, J. Sandrejova, V. Andruch, Recent advances in dispersive liquid–liquid microextraction using organic solvents lighter than water. A review. Microchem. J. 102, 11–17 (2012)CrossRefGoogle Scholar
  30. 30.
    A.A. Nuhu, C. Basheer, B. Saad, Liquid-phase and dispersive liquid–liquid microextraction techniques with derivatization: recent applications in bioanalysis. J. Chromatogr. B 879, 1180–1188 (2011)CrossRefGoogle Scholar
  31. 31.
    M. Baghdadi, F. Shemirani, Cold-induced aggregation microextraction: a novel sample preparation technique based on ionic liquids. Anal. Chim. Acta 613, 56–63 (2008)PubMedCrossRefGoogle Scholar
  32. 32.
    Q. Zhou, H. Bai, G. Xie, J. Xiao, Trace determination of organophosphorus pesticides in environmental samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction. J. Chromatogr. A 1188, 148–153 (2008)PubMedCrossRefGoogle Scholar
  33. 33.
    B. Tang, Y.R. Lee, K.H. Row, Application of ionic liquid in liquid phase microextraction technology. J. Sep. Sci. 35, 2949–2961 (2012)PubMedCrossRefGoogle Scholar
  34. 34.
    V. Vickackaite, A. Padarauskas, Ionic liquids in microextraction techniques. Cent. Eur. J. Chem. 10, 652–674 (2012)Google Scholar
  35. 35.
    T.D. Ho, A.J. Canestraro, J.L. Anderson, Ionic liquids in solid-phase microextraction: a review. Anal. Chim. Acta 695, 18–43 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    H. Yu, T.D. Ho, J.L. Anderson, Ionic liquid and polymeric ionic liquid coatingsin solid-phase microextraction. Trends Anal. Chem. 45, 219–232 (2013)CrossRefGoogle Scholar
  37. 37.
    M.J. Trujillo-Rodríguez, P. Rocío-Bautista, V. Pino, A.M. Afonso, Ionic liquids in dispersive liquid–liquid microextraction. Trends Anal. Chem. 51, 87–106 (2013)CrossRefGoogle Scholar
  38. 38.
    J. Ziemblińska-Bernat, I. Nowak, I. Rykowska, Fast dispersive liquid–liquid microextraction based on magnetic retrieval of in-situ formed an ionic liquid for the preconcentration and determination of benzophenone-type UV filters from environmental water samples. J. Iran. Chem. Soc. 16(4), 661–671 (2019)CrossRefGoogle Scholar
  39. 39.
    I. Rykowska, J. Ziemblińska, I. Nowak, Modern approaches in dispersive liquid–liquid microextraction (DLLME) based on ionic liquids. A review. J. Mol. Liq. 259, 319–339 (2018)CrossRefGoogle Scholar
  40. 40.
    I. Rykowska, I. Nowak, W. Wasiak, Recent trends in the application of ionic liquids for micro extraction techniques. Recent Adv. Anal. Tech. 3, 61–133 (2019). CrossRefGoogle Scholar
  41. 41.
    C. Yao, J.L. Anderson, Dispersive liquid–liquid microextraction using an in-situ metathesis reaction to form an ionic liquid extraction phase for the preconcentration of aromatic compounds from water. Anal. Bioanal. Chem. 395, 1491–1502 (2009)PubMedCrossRefGoogle Scholar
  42. 42.
    C. Yao, T. Li, P. Twu, W.R. Pitner, J.L. Anderson, Selective extraction of emerging contaminants from water samples by dispersive liquid–liquid microextraction using functionalized ionic liquids. J. Chromatogr. A 1218, 1556–1566 (2011)PubMedCrossRefGoogle Scholar
  43. 43.
    M.D. Joshi, J. Anderson, Recent advances of ionic liquids in separation science and mass spectrometry. RSC Adv. 13, 5470–5484 (2012)CrossRefGoogle Scholar
  44. 44.
    K.E. Paleologos, D.L. Giokas, M.I. Karayannis, Micelle-mediated separation and cloud-point extraction. Trends Anal. Chem. 24(5), 426–436 (2005)CrossRefGoogle Scholar
  45. 45.
    R.P. Paradkar, R.R. Wiliams, Micellar colorimetric determination of dithizone metal chelates. Anal. Chem. 66, 2752–2756 (1994)CrossRefGoogle Scholar
  46. 46.
    J. Zhang, Z. Liang, S. Li, Y. Li, B. Peng, W. Zhou, H. Gao, In-situ metathesis reaction with ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction method for the determination of phenylurea pesticides in water samples. Talanta 98, 145–151 (2012)PubMedCrossRefGoogle Scholar
  47. 47.
    D. Martinez, E. Pocurull, R.M. Marcé, F. Borull, M. Calull, Separation of eleven priority phenols by capillary zone electrophoresis with ultraviolet detection. J. Chromatogr. A 714, 1745 (1996)Google Scholar
  48. 48.
    Drinking Water Directive 80/778/EEC, Commission of the European Communities (1980)Google Scholar
  49. 49.
    EEC Drinking Water Guideline 80/779/EEC, 2291/11-29 (1980)Google Scholar
  50. 50.
    Federal Register, EPA Method 604, Phenols, Part VIII, 40 CFR Part 136, Environmental Protection Agency, Washington, DC, 58 (1984)Google Scholar
  51. 51.
    EPA Method 625, Base/Neutrals and Acids, Part VIII, 40 CFR Part 136, Environmental Protection Agency, Washington, DC, 153 (1984)Google Scholar
  52. 52.
    EPA Method 8041, Phenols by Gas Chromatography: Capillary Column Technique (Environmental Protection Agency, Washington, DC), p. 1 (1995)Google Scholar
  53. 53.
    M.J. Benotti, R.A. Trenholm, B.J. Vanderford, J.C. Holady, B.D. Stanford, S.A. Snyder, Pharmaceutical and endocrine disrupting compounds in U.S. drinking water. Environ. Sci. Technol. 43, 597 (2009)PubMedCrossRefGoogle Scholar
  54. 54.
    I.R. Falconer, H.F. Chapman, M.R. Moore, G. Ranmuthugala, Endocrine-disrupting compounds: a review of their challenge to sustainable and safe water supply and water reuse. Environ. Toxicol. 21, 181 (2006)PubMedCrossRefGoogle Scholar
  55. 55.
    M. Gorga, M. Petrovic, D. Barceló, Multi-residue analytical method for the determination of endocrine disruptors and related compounds in river and waste water using dual column liquid chromatography switching system coupled to mass spectrometry. J. Chromatogr. A 1295, 57 (2013)PubMedCrossRefGoogle Scholar
  56. 56.
    D. Garcia-Selles, O. Falivene, P. Arbues, O. Gratacos, S. Tavani, J.A. Munoz, Supervised identification and reconstruction of near-planar geological surfaces from terrestrial laser scanning. Comput. Geosci. 37, 1584–1594 (2011)CrossRefGoogle Scholar
  57. 57.
    P.D. Zygoura, E.K. Paleologos, M.G. Kontominas, Migration levels of PVC plasticizers: effect of ionising radiation treatment. Food Chem. 128, 106–113 (2011)PubMedCrossRefGoogle Scholar
  58. 58.
    Y. Arslan, E. Kenduzler, O.Y. Ataman, Indium determination using slotted quartz tube-atom trap-flame atomic absorption spectrometry and interference studies. Talanta 85, 1786 (2011)PubMedCrossRefGoogle Scholar
  59. 59.
    C.E. Purdom, P.A. Hardiman, V.J. Bye, N.C. Eno, C.R. Tyler, J.P. Sumpter, Estrogenic effects of effluents from sewage treatment works. Chem. Ecol. 8, 275 (1994)CrossRefGoogle Scholar
  60. 60.
    Decision No 2455/2001/EC of the European Parliament and of the Council of 20 November 2001 establishing the list of priority substances in the field of water policy and amending Directive 2000/60/EC, Off. J. Eur. Commun. L 331/1–L 331/5 (2001)Google Scholar
  61. 61.
    Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council, Off. J. Eur. Commun. L 348/84–L 348/96 (2008)Google Scholar
  62. 62.
    Hazardous Substances Data Bank, HSDB (2008)Google Scholar
  63. 63.
    C. Hansch, A. Leo, D. Hoekman, Exploring QSAR—Hydrophobic, Electronic, and Steric Constants (American Chemical Society, Washington, DC), p. 131 (1995)Google Scholar
  64. 64.
    G.G. Gilbert, A. Gupta, Bisphenol-A. (2015)
  65. 65.
    G. Zeng, C. Zhang, G. Huang, J. Yu, Q. Wang, J. Li, B. Xi, H. Liu, Adsorption behavior of bisphenol A on sediments in Xiangjiang River, Central-south China. Chemosphere 65, 1490–1499 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    H. Itokawa, N. Tsotsuka, K. Nakahara, A quantitative structure–activity relationship for antitumor activity of long-chain phenols from Ginkgo biloba L. Chem. Pharm. Bull. 37(6), 1619–1621 (1989)PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    R.J. Maguire, Review of the persistence of nonylphenol and nonylphenol ethoxylates in aquatic environments. Water Qual. Res. J. Can. 34, 37–78 (1999)CrossRefGoogle Scholar
  68. 68.
    Estimation Program Interface (EPI) Suite. Ver. 4.11. Nov, 2012. Available from, as of Nov 16, 2017Google Scholar
  69. 69.
    A. Zgola Grzeskowiak, Magnetic retrieval of ionic liquid formed during in-situ metathesis dispersive liquid–liquid microextraction-preconcentration of selected endocrine disrupting phenols from an enlarges sample volume. Anal. Methods 7, 1076–1084 (2015)CrossRefGoogle Scholar
  70. 70.
    C. Yu, S. Zhang, J. Zhang, S. Li, W. Zhou, H. Gao, R. Lu, An in-situ ionic liquid dispersive liquid–liquid microextraction method for the detection of pyrethroids by LC-UV in environmental water samples. J. Braz. Chem. Soc. 24(6), 1034–1040 (2013)Google Scholar
  71. 71.
    Y. Liu, E.C. Zhao, W.T. Zhu, H.X. Gao, Z.Q. Zhou, Determination of four heterocyclic insecticides by ionic liquid dispersive liquid–liquid microextraction in water samples. J. Chromatogr. A 1216, 885–891 (2009)PubMedCrossRefGoogle Scholar
  72. 72.
    E.L. Lewis, The practical salinity scale of 1978 and its antecedents. J. Mar. Geodesy 5(4), 350–357 (1982)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Adam Mickiewicz UniversityPoznanPoland

Personalised recommendations