Synthesis and characterization of γ-Fe2O3 encapsulated NaY zeolites as solid adsorbent for degradation of ceftriaxone through heterogeneous catalytic advanced oxidation processes

  • Afshin Takdastan
  • Hadi Sadeghi
  • Sina Dobaradaran
  • Lin Ma
  • Armin Sorooshian
  • Maryam Ravanbakhsh
  • Maryam Hazrati NiariEmail author
Original Paper


The degradation of ceftriaxone (CTX) by heterogeneous catalytic advanced oxidation processes has been explored using γ-Fe2O3 NaY zeolites synthesized (γ-Fe2O3@NaY) in the laboratory through hydrothermal and chemical co-precipitation methods. γ-Fe2O3@NaY zeolite was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffractometer analyses. The effects of the initial concentration of CTX and catalyst, pH and hydrogen peroxide (H2O2) dose with the presence UV light on the degradation efficiency of CTX have been studied by conducting experiments in a batch reactor at room temperature. Experimental results reveal that CTX can be efficiently removed after 90 min at pH 4.0, CTX 20 mg/L, catalyst 1.17 g/L, H2O2 30 mM and presence of UV light. A kinetic and isotherm model was developed for investigation of the adsorption mechanism, and results show that model and data are in good agreement. The reusability of γ-Fe2O3@NaY was high as it degrades CTX in the presence of UV light and H2O2 even after five consecutive cycles. Also, due to having magnetic properties, this composite is easily separated from the solution by magnetism. This work indicates that bench synthesized γ-Fe2O3 NaY zeolite is a heterogeneous recoverable catalyst that can efficiently remove CTX from wastewater.

Graphic abstract


Advanced oxidation processes (AOPs) Heterogeneous catalysis γ-Fe2O3 NaY zeolite Ceftriaxone removal 



This paper was financially supported by the Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences (Grant No. 98s48).


  1. 1.
    A.J. Jafari, B. Kakavandi, N. Jaafarzadeh, R.R. Kalantary, M. Ahmadi, A.A. Babaei, Fenton-like catalytic oxidation of tetracycline by AC@ Fe3O4 as a heterogeneous persulfate activator: adsorption and degradation studies. J. Ind. Eng. Chem. 45, 323–333 (2017)CrossRefGoogle Scholar
  2. 2.
    B. Kakavandi, A. Takdastan, N. Jaafarzadeh, M. Azizi, A. Mirzaei, A. Azari, Application of Fe3O4@ C catalyzing heterogeneous UV-Fenton system for tetracycline removal with a focus on optimization by a response surface method. J. Photochem. Photobiol. A 314, 178–188 (2016)CrossRefGoogle Scholar
  3. 3.
    D. Hu, L. Wang, Adsorption of amoxicillin onto quaternized cellulose from flax noil: kinetic, equilibrium and thermodynamic study. J. Taiwan Inst. Chem. Eng. 64, 227–234 (2016)CrossRefGoogle Scholar
  4. 4.
    A. Boukhelkhal, O. Benkortbi, M. Hamadache, N. Ghalem, S. Hanini, A. Amrane, Adsorptive removal of amoxicillin from wastewater using wheat grains: equilibrium, kinetic, thermodynamic studies and mass transfer. Desalin. Water Treat. 57(56), 27035–27047 (2016)CrossRefGoogle Scholar
  5. 5.
    J. Flores-Cano, M. Sánchez-Polo, J. Messoud, I. Velo-Gala, R. Ocampo-Pérez, J. Rivera-Utrilla, Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells. J. Environ. Manag. 169, 116–125 (2016)CrossRefGoogle Scholar
  6. 6.
    A. Moral-Rodríguez, R. Leyva-Ramos, R. Ocampo-Pérez, J. Mendoza-Barron, I. Serratos-Alvarez, J. Salazar-Rabago, Removal of ronidazole and sulfamethoxazole from water solutions by adsorption on granular activated carbon: equilibrium and intraparticle diffusion mechanisms. Adsorption 22(1), 89–103 (2016)CrossRefGoogle Scholar
  7. 7.
    X. Guo, J. Wan, X. Yu, Y. Lin, Study on preparation of SnO2-TiO2/nano-graphite composite anode and electro-catalytic degradation of ceftriaxone sodium. Chemosphere 164, 421–429 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    C.-C. Zhang, T.-C. Weng, B.-A. Su, C.-C. Lai, Y.-C. Chuang, W.-C. Ko et al., Salvage therapy with intravenous fosfomycin plus ceftriaxone for necrotizing fasciitis caused by penicillin-nonsusceptible Streptococcus pneumoniae. J. Microbiol Immunol. Infect. 51, 573 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    M. Malakootian, M. Yaseri, M. Faraji, Removal of antibiotics from aqueous solutions by nanoparticles: a systematic review and meta-analysis. Environ. Sci. Pollut. Res. 26, 8444–8458 (2019)CrossRefGoogle Scholar
  10. 10.
    A. Takdastan, B. Kakavandi, M. Azizi, M. Golshan, Efficient activation of peroxymonosulfate by using ferroferric oxide supported on carbon/UV/US system: a new approach into catalytic degradation of bisphenol A. Chem. Eng. J. 331, 729–743 (2018)CrossRefGoogle Scholar
  11. 11.
    A.D. Shiraz, A. Takdastan, S.M. Borghei, Photo-Fenton like degradation of catechol using persulfate activated by UV and ferrous ions: influencing operational parameters and feasibility studies. J. Mol. Liq. 249, 463–469 (2018)CrossRefGoogle Scholar
  12. 12.
    Z. Noorimotlagh, I. Kazeminezhad, N. Jaafarzadeh, M. Ahmadi, Z. Ramezani, S.S. Martinez, The visible-light photodegradation of nonylphenol in the presence of carbon-doped TiO2 with rutile/anatase ratio coated on GAC: effect of parameters and degradation mechanism. J. Hazard. Mater. 350, 108–120 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Z. Noorimotlagh, S.A. Mirzaee, S.S. Martinez, S. Alavi, M. Ahmadi, N. Jaafarzadeh, Adsorption of textile dye in activated carbons prepared from DVD and CD wastes modified with multi-wall carbon nanotubes: equilibrium isotherms, kinetics and thermodynamic study. Chem. Eng. Res. Des. 141, 290–301 (2019)CrossRefGoogle Scholar
  14. 14.
    M. Mousavi, A. Habibi-Yangjeh, S.R. Pouran, Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts. J. Mater. Sci. Mater. Electron. 29(3), 1719–1747 (2018)CrossRefGoogle Scholar
  15. 15.
    M. Ahmadi, S. Samarbaf, M. Golshan, S. Jorfi, B. Ramavandi, Data on photo-catalytic degradation of 4-chlorophenol from aqueous solution using UV/ZnO/persulfate. Data Brief 20, 582–586 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    S.A. Mirzaee, N. Jaafarzadeh, S. Jorfi, H.T. Gomes, M. Ahmadi, Enhanced degradation of Bisphenol A from high saline polycarbonate plant wastewater using wet air oxidation. Process Saf. Environ. Prot. 120, 321–330 (2018)CrossRefGoogle Scholar
  17. 17.
    M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 35(2), 402–417 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    M. Pirhashemi, A. Habibi-Yangjeh, S.R. Pouran, Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. J. Ind. Eng. Chem. 62, 1–25 (2018)CrossRefGoogle Scholar
  19. 19.
    M. Shekofteh-Gohari, A. Habibi-Yangjeh, M. Abitorabi, A. Rouhi, Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: a review. Crit. Rev. Environ. Sci. Technol. 48(10–12), 806–857 (2018)CrossRefGoogle Scholar
  20. 20.
    M. Ahmadi, H. Rahmani, A. Takdastan, N. Jaafarzadeh, A. Mostoufi, A novel catalytic process for degradation of bisphenol A from aqueous solutions: a synergistic effect of nano-Fe3O4@ Alg-Fe on O3/H2O2. Process Saf. Environ. Prot. 104, 413–421 (2016)CrossRefGoogle Scholar
  21. 21.
    M. Ahmadi, B. Kakavandi, N. Jaafarzadeh, A.A. Babaei, Catalytic ozonation of high saline petrochemical wastewater using PAC@ FeIIFe2IIIO4: optimization, mechanisms and biodegradability studies. Sep. Purif. Technol. 177, 293–303 (2017)CrossRefGoogle Scholar
  22. 22.
    A.A. Babaei, Z. Baboli, N. Jaafarzadeh, G. Goudarzi, M. Bahrami, M. Ahmadi, Synthesis, performance, and nonlinear modeling of modified nano-sized magnetite for removal of Cr(VI) from aqueous solutions. Desalin. Water Treat. 53(3), 768–777 (2015)CrossRefGoogle Scholar
  23. 23.
    A.A. Babaei, B. Kakavandi, M. Rafiee, F. Kalantarhormizi, I. Purkaram, E. Ahmadi et al., Comparative treatment of textile wastewater by adsorption, Fenton, UV-Fenton and US-Fenton using magnetic nanoparticles-functionalized carbon (MNPs@ C). J. Ind. Eng. Chem. 56, 163–174 (2017)CrossRefGoogle Scholar
  24. 24.
    C.F. Cogswell, T.P. Nigl, A. Stavola, A. Wolek, Y. Wang, J. Zummo et al., Generation and use of a pure titanium pillared MCM-36 structure as a high efficiency carbon dioxide capture platform and amine loaded solid adsorbent. Microporous Mesoporous Mater. 280, 151–156 (2019)CrossRefGoogle Scholar
  25. 25.
    N. Suárez, J. Pérez-Pariente, F. Mondragón, A. Moreno, Generation of hierarchical porosity in beta zeolite by post-synthesis treatment with the cetyltrimethylammonium cationic surfactant under alkaline conditions. Microporous Mesoporous Mater. 280, 144–150 (2019)CrossRefGoogle Scholar
  26. 26.
    L.M. Henning, D.D. Cubas, M.G. Colmenares, J. Schmidt, M.F. Bekheet, B.R. Pauw et al., High specific surface area ordered mesoporous silica COK-12 with tailored pore size. Microporous Mesoporous Mater. 280, 133–143 (2019)CrossRefGoogle Scholar
  27. 27.
    X. Liu, N. Yan, L. Wang, C. Ma, P. Guo, P. Tian et al., Landscape of AlPO-based structures and compositions in the database of zeolite structures. Microporous Mesoporous Mater. 280, 105–115 (2019)CrossRefGoogle Scholar
  28. 28.
    D.J. Moon, W.T. Lim, K. Seff, Crystal structure of a hydrogen sulfide sorption complex of anhydrous Mn2+-exchanged zeolite Y (FAU, Si/Al = 1.56). Microporous Mesoporous Mater. 279, 432–438 (2019)CrossRefGoogle Scholar
  29. 29.
    T.-H. Pham, K.-M. Lee, M.S. Kim, J. Seo, C. Lee, La-modified ZSM-5 zeolite beads for enhancement in removal and recovery of phosphate. Microporous Mesoporous Mater. 279, 37–44 (2019)CrossRefGoogle Scholar
  30. 30.
    Y. Zhao, Z. Liu, W. Li, Y. Zhao, H. Pan, Y. Liu et al., Synthesis, characterization, and catalytic performance of high-silica Y zeolites with different crystallite size. Microporous Mesoporous Mater. 167, 102–108 (2013)CrossRefGoogle Scholar
  31. 31.
    M. Ahmadi, M.H. Niari, B. Kakavandi, Development of maghemite nanoparticles supported on cross-linked chitosan (γ-Fe2O3@ CS) as a recoverable mesoporous magnetic composite for effective heavy metals removal. J. Mol. Liq. 248, 184–196 (2017)CrossRefGoogle Scholar
  32. 32.
    M. Moosavifar, A. Alemi, M.R. Marefat, N. Nouruzi, H. Mahmoodi, The effect of synthesis method and post-synthesis treatment on the formation of neutral Mn(II) complex into anionic zeolite structure and investigation of its catalytic activity in the epoxidation of alkenes. J. Iran. Chem. Soc. 11(6), 1561–1567 (2014)CrossRefGoogle Scholar
  33. 33.
    R. Ghahremanzadeh, Z. Rashid, A.-H. Zarnani, H. Naeimi, Highly active magnetically separable CuFe 2 O 4 nanocatalyst: an efficient catalyst for the green synthesis of tetrahydrofuro [3,4-b] quinoline-1, 8 (3H, 4H) dione derivatives. J. Iran. Chem. Soc. 11(5), 1407–1419 (2014)CrossRefGoogle Scholar
  34. 34.
    M.Y. Badi, A. Azari, H. Pasalari, A. Esrafili, M. Farzadkia, Modification of activated carbon with magnetic Fe3O4 nanoparticle composite for removal of ceftriaxone from aquatic solutions. J. Mol. Liq. 261, 146–154 (2018)CrossRefGoogle Scholar
  35. 35.
    M. Hayasi, N. Saadatjoo, Preparation of magnetic nanoparticles functionalized with poly (styrene-2-acrylamido-2-methyl propanesulfonic acid) as novel adsorbents for removal of pharmaceuticals from aqueous solutions. Adv. Polym. Technol. 37(6), 1941–1953 (2018)CrossRefGoogle Scholar
  36. 36.
    F.-F. Liu, J. Zhao, S. Wang, P. Du, B. Xing, Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes. Environ. Sci. Technol. 48(22), 13197–13206 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    S. Miralles-Cuevas, F. Audino, I. Oller, R. Sánchez-Moreno, J.S. Pérez, S. Malato, Pharmaceuticals removal from natural water by nanofiltration combined with advanced tertiary treatments (solar photo-Fenton, photo-Fenton-like Fe(III)–EDDS complex and ozonation). Sep. Purif. Technol. 122, 515–522 (2014)CrossRefGoogle Scholar
  38. 38.
    I.-G. Yi, J.-K. Kang, S.-C. Lee, C.-G. Lee, S.-B. Kim, Synthesis of an oxidized mesoporous carbon-based magnetic composite and its application for heavy metal removal from aqueous solutions. Microporous Mesoporous Mater. 279, 45–52 (2019)CrossRefGoogle Scholar
  39. 39.
    S. Jorfi, S. Pourfadakari, B. Kakavandi, A new approach in sono-photocatalytic degradation of recalcitrant textile wastewater using MgO@ Zeolite nanostructure under UVA irradiation. Chem. Eng. J. 343, 95–107 (2018)CrossRefGoogle Scholar
  40. 40.
    B. Kakavandi, A. Raofi, S.M. Peyghambarzadeh, B. Ramavandi, M.H. Niri, M. Ahmadi, Efficient adsorption of cobalt on chemical modified activated carbon: characterization, optimization and modeling studies. Desalin. Water Treat. 111, 310–321 (2018)CrossRefGoogle Scholar
  41. 41.
    S. Ba, J.P. Jones, H. Cabana, Hybrid bioreactor (HBR) of hollow fiber microfilter membrane and cross-linked laccase aggregates eliminate aromatic pharmaceuticals in wastewaters. J. Hazard. Mater. 280, 662–670 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    L. Ai, C. Zhang, L. Li, J. Jiang, Iron terephthalate metal–organic framework: revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation. Appl. Catal. B 148, 191–200 (2014)CrossRefGoogle Scholar
  43. 43.
    B. Kakavandi, A. Takdastan, S. Pourfadakari, M. Ahmadmoazzam, S. Jorfi, Heterogeneous catalytic degradation of organic compounds using nanoscale zero-valent iron supported on kaolinite: mechanism, kinetic and feasibility studies. J. Taiwan Inst. Chem. Eng. 96, 329–340 (2019)CrossRefGoogle Scholar
  44. 44.
    N. Jaafarzadeh, F. Ghanbari, M. Ahmadi, Efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate/magnetic copper ferrite nanoparticles/ozone: a novel combination of advanced oxidation processes. Chem. Eng. J. 320, 436–447 (2017)CrossRefGoogle Scholar
  45. 45.
    S.K. Maeng, K. Cho, B. Jeong, J. Lee, Y. Lee, C. Lee et al., Substrate-immobilized electrospun TiO2 nanofibers for photocatalytic degradation of pharmaceuticals: the effects of pH and dissolved organic matter characteristics. Water Res. 86, 25–34 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    F. Ghanbari, M. Moradi, F. Gohari, Degradation of 2,4,6-trichlorophenol in aqueous solutions using peroxymonosulfate/activated carbon/UV process via sulfate and hydroxyl radicals. J. Water Process Eng. 9, 22–28 (2016)CrossRefGoogle Scholar
  47. 47.
    J.C. Carlson, M.I. Stefan, J.M. Parnis, C.D. Metcalfe, Direct UV photolysis of selected pharmaceuticals, personal care products and endocrine disruptors in aqueous solution. Water Res. 84, 350–361 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    H. Mansouri, R.J. Carmona, A. Gomis-Berenguer, S. Souissi-Najar, A. Ouederni, C.O. Ania, Competitive adsorption of ibuprofen and amoxicillin mixtures from aqueous solution on activated carbons. J. Colloid Interface Sci. 449, 252–260 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    M. Moradi, F. Ghanbari, M. Manshouri, K.A. Angali, Photocatalytic degradation of azo dye using nano-ZrO 2/UV/Persulfate: response surface modeling and optimization. Korean J. Chem. Eng. 33(2), 539–546 (2016)CrossRefGoogle Scholar
  50. 50.
    M. Ahmadi, F. Ghanbari, A. Alvarez, S.S. Martinez, UV-LEDs assisted peroxymonosulfate/Fe2+ for oxidative removal of carmoisine: the effect of chloride ion. Korean J. Chem. Eng. 34(8), 2154–2161 (2017)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  • Afshin Takdastan
    • 2
    • 3
  • Hadi Sadeghi
    • 4
  • Sina Dobaradaran
    • 5
    • 6
    • 7
  • Lin Ma
    • 8
  • Armin Sorooshian
    • 8
  • Maryam Ravanbakhsh
    • 1
    • 2
  • Maryam Hazrati Niari
    • 1
    • 2
    Email author
  1. 1.Student Research CommitteeAhvaz Jundishapur University of Medical SciencesAhvazIran
  2. 2.Department of Environmental Health Engineering, School of HealthAhvaz Jundishapur University of Medical SciencesAhvazIran
  3. 3.Environmental Technologies Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
  4. 4.Department of Environmental Health Engineering, School of HealthArdabil University of Medical SciencesArdabilIran
  5. 5.Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research InstituteBushehr University of Medical SciencesBushehrIran
  6. 6.Department of Environmental Health Engineering, Faculty of HealthBushehr University of Medical SciencesBushehrIran
  7. 7.The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research InstituteBushehr University of Medical SciencesBushehrIran
  8. 8.Department of Chemical and Environmental EngineeringThe University of ArizonaTucsonUSA

Personalised recommendations