Advertisement

Assessing the electrochemical performance of hierarchical nanostructured CuO@TiO2 as an efficient bi-functional electrocatalyst

  • Ayesha MujtabaEmail author
  • Naveed Kausar JanjuaEmail author
  • Tariq Yasin
  • Sana Sabahat
Original Paper
  • 10 Downloads

Abstract

Fabrication and attractive performance of CuO nanoparticles coated onto TiO2 substrate (CuO@TiO2) as electrocatalysts for glucose and methanol electrooxidation are detailed in this article. These bi-functional electrocatalysts were prepared by impregnating (5–25 wt%) CuO nanoparticles onto nanosized TiO2 substrate and were characterized for morphology and composition. Cyclic voltammetry and electrochemical impedance spectroscopy provided a detailed account of their electrochemical capacity. All samples in CuO@TiO2 series were tested for probable electrocatalysis; however, 5CuO@TiO2 possessed significantly improved electrocatalytic activity for methanol and glucose electrooxidation. This can be attributed to the better conductivity of the electrocatalyst showing that electrocatalytic activity is limited by the amount of CuO loading on CuO@TiO2 electrocatalyst. The involvement of the Cu (II) to Cu (III) reversible redox couple was evident in the electrocatalytic oxidation. The sensitivity of 7.15 μA mM−1 cm−2 and a detection limit of 235.0 μM for glucose at a signal to noise ratio of 3 were obtained using 5CuO@ TiO2-modified glassy carbon electrode.

Keywords

CuO@TiO2 nanopowders Cyclic voltammetry Electrochemical impedance spectroscopy Electroxidation 

Notes

Acknowledgements

The research work elucidated in this paper was carried out at laboratory provisions in Quaid-i-Azam University Islamabad. Authors greatly acknowledge NUST Islamabad for the SEM and EDX mapping facility. HEC Projects No. 1718 and 4768 are highly acknowledged for Gamry instrument.

Supplementary material

13738_2019_1797_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1074 kb)

References

  1. 1.
    O. Popovski, Electrocatalysts in the last 30 years–from precious metals to cheaper but sophisticated complex systems. Bull. Chem. Technol. Maced. 23, 101–112 (2004)Google Scholar
  2. 2.
    C. Qian, X. Guo, W. Zhang, H. Yang, Y. Qian, F. Xu, S. Qian, S. Lin, T. Fan, Co3O4 nanoparticles on porous bio-carbon substrate as catalyst for oxygen reduction reaction. Microporous Mesoporous Mater. 277, 45–51 (2019)CrossRefGoogle Scholar
  3. 3.
    X. Guo, C. Qian, R. Shi, W. Zhang, F. Xu, S. Qian, J. Zhang, H. Yang, A. Yuan, T. Fan, Biomorphic Co-N-C/CoOx composite derived from natural chloroplasts as efficient electrocatalyst for oxygen reduction reaction. Small 15, 1804855 (2019)CrossRefGoogle Scholar
  4. 4.
    S. Thangavel, N. Raghavan, G. Venugopal, Magnetically Separable Iron Oxide‐Based Nanocomposite Photocatalytic Materials for Environmental Remediation, Photocatalytic Functional Materials for Environmental Remediation (Wiley, 2019), pp. 243–265Google Scholar
  5. 5.
    R. Raliya, T.S. Chadha, K. Haddad, P. Biswas, Perspective on nanoparticle technology for biomedical use. Curr. Pharm. Des. 22, 2481–2490 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    S.Y. Tee, K.Y. Win, W.S. Teo, L.D. Koh, S. Liu, C.P. Teng, M.Y. Han, Recent progress in energy-driven water splitting. Adv. Sci. 4, 1600337 (2017)CrossRefGoogle Scholar
  7. 7.
    Y. Chen, Y. Wu, C. Liu, L. Guo, J. Nie, Y. Chen, T. Qiu, Low-temperature conversion of ammonia to nitrogen in water with ozone over composite metal oxide catalyst. J. Environ. Sci. 66, 265–273 (2018)CrossRefGoogle Scholar
  8. 8.
    L. Liu, P. Concepción, A. Corma, Modulating the catalytic behavior of non-noble metal nanoparticles by inter-particle interaction for chemoselective hydrogenation of nitroarenes into corresponding azoxy or azo compounds. J. Catal. 369, 312–323 (2019)CrossRefGoogle Scholar
  9. 9.
    Z.D. Mahmoudabadi, E. Eslami, One-step synthesis of CuO/TiO2 nanocomposite by atmospheric microplasma electrochemistry–Its application as photoanode in dye-sensitized solar cell. J. Alloy. Compd. 793, 336–342 (2019)CrossRefGoogle Scholar
  10. 10.
    Q. Yang, M. Long, L. Tan, Y. Zhang, J. Ouyang, P. Liu, A. Tang, Helical TiO2 nanotube arrays modified by Cu–Cu2O with ultrahigh sensitivity for the nonenzymatic electro-oxidation of glucose. ACS Appl. Mater. Interfaces. 7, 12719–12730 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    A. Mujtaba, N.K. Janjua, Fabrication and electrocatalytic application of CuO@ Al2O3 hybrids. J. Electrochem. Soc. 162, H328–H337 (2015)CrossRefGoogle Scholar
  12. 12.
    A. Mujtaba, N.K. Janjua, Electrochemical sensing platform based on CuO@ CeO2 hybrid oxides. J. Electroanal. Chem. 763, 125–133 (2016)CrossRefGoogle Scholar
  13. 13.
    J.-H. Lee, J.-H. Kim, S.S. Kim, CuO–TiO2 p–n core–shell nanowires: sensing mechanism and p/n sensing-type transition. Appl. Surf. Sci. 448, 489–497 (2018)CrossRefGoogle Scholar
  14. 14.
    N.L. Reddy, S. Emin, V.D.S. Kumari, Muthukonda Venkatakrishnan, CuO quantum dots decorated TiO2 nanocomposite photocatalyst for stable hydrogen generation. Ind. Eng. Chem. Res. 57, 568–577 (2018)CrossRefGoogle Scholar
  15. 15.
    A.M. Kumar, A. Khan, R. Suleiman, M. Qamar, S. Saravanan, H. Dafalla, Bifunctional CuO/TiO2 nanocomposite as nanofiller for improved corrosion resistance and antibacterial protection. Prog. Org. Coat. 114, 9–18 (2018)CrossRefGoogle Scholar
  16. 16.
    B. Khodadadi, A.Y. Faal, A. Shahvarughi, Tilia platyphyllos extract assisted green synthesis of CuO/TiO2 nanocomposite: application as a reusable catalyst for the reduction of organic dyes in water. J. Appl. Chem. Res. 13, 51–65 (2019)Google Scholar
  17. 17.
    S. Zhang, F. Chen, Y. Chi, Z. Dan, F. Qin, Non-enzymatic electrochemical glucose sensor based on Ti–Cu–O nanotubes prepared from TiCu amorphous alloy. J. Nanosci. Nanotechnol. 19, 3825–3831 (2019)PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    S. Luo, F. Su, C. Liu, J. Li, R. Liu, Y. Xiao, Y. Li, X. Liu, Q. Cai, A new method for fabricating a CuO/TiO2 nanotube arrays electrode and its application as a sensitive nonenzymatic glucose sensor. Talanta 86, 157–163 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    J. Chen, L. Xu, R. Xing, J. Song, H. Song, D. Liu, J. Zhou, Electrospun three-dimensional porous CuO/TiO2 hierarchical nanocomposites electrode for nonenzymatic glucose biosensing. Electrochem. Commun. 20, 75–78 (2012)CrossRefGoogle Scholar
  20. 20.
    M. Niu, W. Xu, S. Zhu, Y. Liang, Z. Cui, X. Yang, A. Inoue, Synthesis of nanoporous CuO/TiO2/Pd-NiO composite catalysts by chemical dealloying and their performance for methanol and ethanol electro-oxidation. J. Power Sources 362, 10–19 (2017)CrossRefGoogle Scholar
  21. 21.
    A. Dicks, D.A.J. Rand, Fuel Cell Systems Explained (Wiley, London, 2018)CrossRefGoogle Scholar
  22. 22.
    R.-M. Yuan, H.-J. Li, X.-M. Yin, H.-Q. Wang, J.-H. Lu, L.-L. Zhang, Coral-like Cu-Co-mixed oxide for stable electro-properties of glucose determination. Electrochim. Acta 273, 502–510 (2018)CrossRefGoogle Scholar
  23. 23.
    C. Chen, X.-L. Zhao, Z.-H. Li, Z.-G. Zhu, S.-H. Qian, A.J. Flewitt, Current and emerging technology for continuous glucose monitoring. Sensors 17, 182 (2017)CrossRefGoogle Scholar
  24. 24.
    C. Canales, L. Gidi, G. Ramírez, Electrochemical activity of modified glassy carbon electrodes with covalent bonds towards molecular oxygen reduction. Int. J. Electrochem. Sci. 10, 1684–1695 (2015)Google Scholar
  25. 25.
    A. Shalan, M. Rashad, Y. Yu, M. Lira-Cantú, M. Abdel-Mottaleb, A facile low temperature synthesis of TiO2 nanorods for high efficiency dye sensitized solar cells. Appl. Phys. A 110, 111–122 (2013)CrossRefGoogle Scholar
  26. 26.
    S.M. Solyman, S.A. Hassan, S.A. Sadek, H.S. Abdel-Samad, Redox-initiated bulk polymerization of methyl methacrylate using a CuO/TiO2 catalyst system. Int. J. Polym. Mater. 59, 475–487 (2010)CrossRefGoogle Scholar
  27. 27.
    P.D. File, Joint committee on powder diffraction standards (ASTM, Philadelphia, PA, 1967), pp. 9–185Google Scholar
  28. 28.
    D. Reyes-Coronado, G. Rodriguez-Gattorno, M. Espinosa-Pesqueira, C. Cab, R. De Coss, G. Oskam, Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19, 145605 (2008)PubMedCrossRefGoogle Scholar
  29. 29.
    J. Huang, S. Wang, Y. Zhao, X. Wang, S. Wang, S. Wu, S. Zhang, W. Huang, Synthesis and characterization of CuO/TiO2 catalysts for low-temperature CO oxidation. Catal. Commun. 7, 1029–1034 (2006)CrossRefGoogle Scholar
  30. 30.
    Z. Liu, C. Zhou, Improved photocatalytic activity of nano CuO-incorporated TiO2 granules prepared by spray drying. Prog. Nat. Sci. Mater. Int. 25, 334–341 (2015)CrossRefGoogle Scholar
  31. 31.
    M. Liu, J. Chang, C. Yan, J. Bell, Comparative study of photocatalytic performance of titanium oxide spheres assembled by nanorods, nanoplates and nanosheets. Int. J. Smart Nano Mater. 3, 72–80 (2012)CrossRefGoogle Scholar
  32. 32.
    S. Agarwala, M. Kevin, A. Wong, C. Peh, V. Thavasi, G. Ho, Mesophase ordering of TiO2 film with high surface area and strong light harvesting for dye-sensitized solar cell. ACS Appl. Mater. Interfaces. 2, 1844–1850 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    W.Z. Teo, A. Ambrosi, M. Pumera, Direct electrochemistry of copper oxide nanoparticles in alkaline media. Electrochem. Commun. 28, 51–53 (2013)CrossRefGoogle Scholar
  34. 34.
    A. Ambrosi, M. Pumera, Redox-active nickel in carbon nanotubes and its direct determination. Chem. Eur. J. 18, 3338–3344 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    A.J. Bard, L.R. Faulkner, Fundamentals and Applications, Electrochemical Methods, 2nd edn. (Wiley, New York, 2001)Google Scholar
  36. 36.
    B. Derkus, E. Emregul, C. Yucesan, K.C. Emregul, Myelin basic protein immunosensor for multiple sclerosis detection based upon label-free electrochemical impedance spectroscopy. Biosens. Bioelectron. 46, 53–60 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    S. Thiagarajan, M. Rajkumar, S.-M. Chen, Nano TiO2-PEDOT film for the simultaneous detection of ascorbic acid and diclofenac. Int. J. Electrochem. Sci. 7, 2109–2122 (2012)Google Scholar
  38. 38.
    S. Eloul, C. Batchelor-McAuley, R.G. Compton, Thin film-modified electrodes: a model for the charge transfer resistance in electrochemical impedance spectroscopy. J. Solid State Electrochem. 18, 3239–3243 (2014)CrossRefGoogle Scholar
  39. 39.
    S.H. Aboutalebi, A.T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H.K. Liu, S.X. Dou, Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ. Sci. 4, 1855–1865 (2011)CrossRefGoogle Scholar
  40. 40.
    B.A. Boukamp, A linear Kronig-Kramers transform test for immittance data validation. J. Electrochem. Soc. 142, 1885–1894 (1995)CrossRefGoogle Scholar
  41. 41.
    A. Nafady, Electrochemistry with the extremely weak coordinating anions: using of carboranes [H-CB11X6Y5] − (X = H, Cl, Br; Y = H or Me) as supporting electrolyte anions. J. Electroanal. Chem. 755, 1–6 (2015)CrossRefGoogle Scholar
  42. 42.
    E. Biçer, P. Çetinkaya, Electrochemical behaviour of the antibiotic drug novobiocin sodium on a mercury electrode. Croat. Chem. Acta 82, 573–582 (2009)Google Scholar
  43. 43.
    V. Oncescu, D. Erickson, High volumetric power density, non-enzymatic, glucose fuel cells. Sci. Rep. 3, 1226 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Z.D. Gao, J. Guo, N.K. Shrestha, R. Hahn, Y.Y. Song, P. Schmuki, Nickel hydroxide nanoparticle activated semi-metallic TiO2 nanotube arrays for non-enzymatic glucose sensing. Chem. A Eur. J. 19, 15530–15534 (2013)CrossRefGoogle Scholar
  45. 45.
    R. Ding, J. Liu, J. Jiang, J. Zhu, X. Huang, Mixed Ni–Cu-oxide nanowire array on conductive substrate and its application as enzyme-free glucose sensor. Anal. Methods 4, 4003–4008 (2012)CrossRefGoogle Scholar
  46. 46.
    A. Raziq, M. Tariq, R. Hussain, M.H. Mahmood, I. Ullah, J. Khan, M. Mohammad, Highly sensitive, non-enzymatic and precious metal free electrochemical glucose sensor based on Ni–Cu/TiO2 modified glassy carbon electrode. J. Serb. Chem. Soc. 83, 733–744 (2018)CrossRefGoogle Scholar
  47. 47.
    J. Stanley, R.J. Sree, T. Ramachandran, T. Babu, B.G. Nair, Vertically aligned TiO2 nanotube arrays decorated with CuO mesoclusters for the nonenzymatic sensing of glucose. J. Nanosci. Nanotechnol. 17, 2732–2739 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    X. Wang, C.-Y. Ge, K. Chen, Y.X. Zhang, An ultrasensitive non-enzymatic glucose sensors based on controlled petal-like CuO nanostructure. Electrochim. Acta 259, 225–232 (2018)CrossRefGoogle Scholar
  49. 49.
    M.P. Sánchez, M. Barrera, S. González, R. Souto, R. Salvarezza, A. Arvia, Electrochemical behaviour of copper in aqueous moderate alkaline media, containing sodium carbonate and bicarbonate, and sodium perchlorate. Electrochim. Acta 35, 1337–1343 (1990)CrossRefGoogle Scholar
  50. 50.
    M.M. El-Deeb, W.M. El Rouby, A. Abdelwahab, A.A. Farghali, Effect of pore geometry on the electrocatalytic performance of nickel cobaltite/carbon xerogel nanocomposite for methanol oxidation. Electrochim. Acta 259, 77–85 (2018)CrossRefGoogle Scholar
  51. 51.
    A.A. Ensafi, B. Rezaei, Z. Mirahmadi-Zare, H. Karimi-Maleh, Highly selective and sensitive voltammetric sensor for captopril determination based on modified multiwall carbon nanotubes paste electrode. J. Braz. Chem. Soc. 22, 1315–1322 (2011)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Department of ChemistryQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Department of Metallurgy and Materials EngineeringPakistan Institute of Engineering and Applied Sciences PIEAS NiloreIslamabadPakistan
  3. 3.Department of ChemistryCOMSATS UniversityIslamabadPakistan

Personalised recommendations