Journal of the Iranian Chemical Society

, Volume 17, Issue 2, pp 493–497 | Cite as

Practical synthesis of canthaxanthin

  • Shiqing Pi
  • Meiyang Xi
  • Liping Deng
  • Huiting Xu
  • Chengjie Feng
  • Runpu Shen
  • Chunlei WuEmail author
Original Paper


In this study, a novel route for the total synthesis of canthaxanthin is described. The synthesis is firstly based on an epoxidation of α-ionone with metachloroperbenzoic acid to afford the epoxide, followed by conversion of the epoxide to 3-hydroxyl-β-ionone in the presence of sodium methoxide. Next, 3-hydroxyl-C14-aldehyde was obtained by a Darzens condensation with 4-hydroxyl-β-ionone and methyl chloroacetate, which can be converted to 3-hydroxyl-C15-phophonate via a Wittig–Horner condensation with tetraethyl methylenebisphosphonate. Then, a Wittig–Horner condensation with 3-hydroxyl-C15-phosphonate and C10-trienedial resulted in 4,4′-dihydroxyl-β-carotene, followed by an oxidation afforded the target product canthaxanthin. The overall yield of this route is 37% from α-ionone. The synthetic steps are easily operated and are practical for the large-scale production.


Canthaxanthin Wittig–Horner condensation Total synthesis Phosphonate 



This study was supported by the Public Projects of Zhejiang Province of China (No. LGG19B020002).


  1. 1.
    T. Esatbeyoglu, G. Rimbach, Mol. Nutr. Food Res. 61, 1 (2017). CrossRefGoogle Scholar
  2. 2.
    A.J. Meléndez-Marténez, G. Britton, I.M. Vicario, F.J. Heredia, Food Chem. 101, 1145 (2006)CrossRefGoogle Scholar
  3. 3.
    J.A. Maresca, J.E. Graham, D.A. Bryant, Photosynth. Res. 97, 121 (2008)CrossRefGoogle Scholar
  4. 4.
    C.I. Cazzonelli, Funct. Plant Biol. 38, 833 (2011)CrossRefGoogle Scholar
  5. 5.
    C.K. Warren, B.C.L. Weedon, J. Chem. Soc. 3986 (1958)Google Scholar
  6. 6.
    A. Ramazani, M. Khoobi, A. Torkaman, F.Z. Nasrabadi, H. Forootanfar, M. Shakibaie, M. Jafari, A. Ameri, S. Emami, M.A. Faramarzi, A. Foroumadi, A. Shafiee, Eur. J. Med. Chem. 78, 151 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Rouhani, A. Ramazani, S.W. Joo, Ultrason. Sonochem. 22, 391 (2015)CrossRefGoogle Scholar
  8. 8.
    H. Aghahosseini, A. Ramazani, N.S. Jalayer, Z. Ranjdoost, A. Souldozi, K. Ślepokura, T. Lis, Org. Lett. 21, 22 (2019)CrossRefGoogle Scholar
  9. 9.
    E. Widmer, Pure Appl. Chem. 57, 741 (1985)CrossRefGoogle Scholar
  10. 10.
    U. Hengartner, N.J. Roseland, Patent-US4296259 (1981)Google Scholar
  11. 11.
    M. Rosenberger, P. McDougal, J. Zahr, J. Org. Chem. 47, 2130 (1982)CrossRefGoogle Scholar
  12. 12.
    H. Ernst, J. Paust, W. Hoffman, Patent-US5210314 (1993)Google Scholar
  13. 13.
    J.H. Babler, Patent-US5952519 (1999)Google Scholar
  14. 14.
    S.Q. Pi, R.P. Shen, G.Q. Zhao, Y.J. Pan, X.Z. Chen, Fine Chem. 21, 605 (2004)Google Scholar
  15. 15.
    R.P. Shen, X.Y. Jiang, W.D. Ye, X.H. Song, L. Liu, X.J. Lao, C.L. Wu, Tetrahedron 67, 5610 (2011)CrossRefGoogle Scholar
  16. 16.
    X.H. Song, H.T. Xu, W.D. Ye, C.L. Lv, R.W. Cao, C.L. Wu, R.P. Shen, Org. Prep. Proced. Int. 48, 350 (2016)CrossRefGoogle Scholar
  17. 17.
    C.L. Wu, R.W. Cao, X.H. Song, C.L. Lv, W.D. Ye, S.Q. Pi, C.H. Chen, R.P. Shen, Synthesis 47, 481 (2015)Google Scholar
  18. 18.
    Y. Tadashi, Patent-JP2004089015 (2004)Google Scholar
  19. 19.
    S.Q. Pi, Y.J. Pan, B. Li, G.N. Zheng, M.Y Zhang, Patent-CN 101081854 (2007)Google Scholar
  20. 20.
    M. Grung, P. Metzger, S. Liaaen-Jensen, Biochem. Syst. Ecol. 17, 263 (1989)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  • Shiqing Pi
    • 1
    • 2
  • Meiyang Xi
    • 1
  • Liping Deng
    • 1
  • Huiting Xu
    • 1
  • Chengjie Feng
    • 1
  • Runpu Shen
    • 1
    • 2
  • Chunlei Wu
    • 1
    Email author
  1. 1.Department of Chemistry and Chemical EngineeringShaoxing UniversityShaoxingPeople’s Republic of China
  2. 2.Zhejiang Medicine Co. Ltd, Xinchang Pharmaceutical FactoryXinchangPeople’s Republic of China

Personalised recommendations