Advertisement

Journal of the Iranian Chemical Society

, Volume 17, Issue 2, pp 469–481 | Cite as

Green protocol for synthesis of MgFe2O4 nanoparticles and study of their activity as an efficient catalyst for the synthesis of chromene and pyran derivatives under ultrasound irradiation

  • Bahar Eshtehardian
  • Morteza RouhaniEmail author
  • Zohreh Mirjafary
Original Paper
  • 17 Downloads

Abstract

In this study, the MgFe2O4 nanoparticles were synthesized via a green and simple approach. Then an effective procedure to synthesize 2-amino-7-hydroxy-4H-chromene and tetrahydrobenzo[b]pyran derivatives was established through the chemical reaction between different aldehydes, malononitrile and resorcinol (or dimedone) in the presence of MgFe2O4 nanoparticles as a beneficial catalyst in ethanol as solvent under ultrasound irradiation. Moreover, the synthesized MgFe2O4 nanoparticles were easily recovered by an external magnet and reused for four times without significant loss of their catalytic activity. Simple, fast, effective and eco-friendly as well as quick purification method along with high product yields are some of the advantages of the present chemical reaction.

Keywords

MgFe2O4 Chromene Pyran Ultrasound Green Nanoparticles 

Notes

Acknowledgements

The authors thank, Islamic Azad University, Science and Research Branch for the support and guidance.

Compliance with ethical statement

Conflict of interest

We have no conflicts of interest to declare.

Supplementary material

13738_2019_1783_MOESM1_ESM.docx (367 kb)
Supplementary material 1 (DOCX 367 kb)

References

  1. 1.
    J.A. Moyer, R. Gao, P. Schiffer, L.W. Martin, Epitaxial growth of highly-crystalline spinel ferrite thin films on perovskite substrates for all-oxide devices. Sci. Rep. 5, 1–11 (2015)CrossRefGoogle Scholar
  2. 2.
    T. Tatarchuk, M. Bououdina, J. Judith Vijaya, L. John Kennedy, in Nanophysics, Nanomaterials, Interface Studies, and Applications, vol. 195, ed. by O. Fesenko, L. Yatsenko (Springer, Cham, 2017), pp. 305–325.  https://doi.org/10.1007/978-3-319-56422-7_22 Google Scholar
  3. 3.
    H.L. Andersen, M. Saura-Muzquiz, C. Granados-Miralles, E. Canevet, N. Lock, M. Christensen, Crystalline and magnetic structure–property relationship in spinel ferrite nanoparticles. Nanoscale 10, 14902–14914 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    A. Ramazani, S. Taghavi Fardood, Z. Hosseinzadeh, F. Sadri, S.W. Joo, Green synthesis of magnetic copper ferrite nanoparticles using tragacanth gum as a biotemplate and their catalytic activity for the oxidation of alcohols, Iran. J. Catal. 7, 181–185 (2017)Google Scholar
  5. 5.
    M. Azam, S. Riaz, A. Akbar, S. Naseem, Structural, magnetic and dielectric properties of spinel MgFe2O4 by sol–gel route. J. Sol-Gel Sci. Technol. 74, 340–351 (2015)CrossRefGoogle Scholar
  6. 6.
    Y.H. Hou, Y.J. Zhao, Z.W. Liu, H.Y. Yu, X.C. Zhong, W.Q. Qiu, D.C. Zeng, L.S. Wen, Structural, electronic and magnetic properties of partially inverse spinel CoFe2O4: a first-principles study. J. Phys. D 43, 44–53 (2010)CrossRefGoogle Scholar
  7. 7.
    Z.Z. Lazarevic, C. jovalekic, V.N. Ivanovski, A. Recnik, A. Milutinovic, B. Cekic, N.Z. Romcevic, J. Phys. Chem. Solids 75, 869–877 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Gateshki, V. Petkov, S.K. Pradhan, T. Vogt, Structure of nanocrystal-line MgFe2O4 from X-ray diffraction, rietveld and atomic pair distribution function analysis. J. Appl. Crystallogr. 38, 772–779 (2005)CrossRefGoogle Scholar
  9. 9.
    M.E. Rabanal, A. Várez, B. Levenfeld, J.M. Torralba, Magnetic properties of Mg-ferrite after milling process. J. Mater. Process. Technol. 143–144, 470–474 (2003)CrossRefGoogle Scholar
  10. 10.
    K. Konishi, T. Maehara, T. Kamimori, H. Aono, T. Naohara, H. Kikkawa, Y. Watanabe, K. Kawachi, Heating ferrite powder with AC magnetic field for thermal coagulation therapy. J. Magn. Magn. Mater 272–276(Part 3)), 2428–2429 (2004)CrossRefGoogle Scholar
  11. 11.
    F.A. Benko, F.P. Koffyberg, The effect of defects on some photoelectrochemical properties of semiconducting MgFe2O4. Mater. Res. Bull. 21, 1183–1188 (1986)CrossRefGoogle Scholar
  12. 12.
    P.V. Reddy, R. Satyanarayana, T. Seshagiri Rao, Electrical conduction in magnesium ferrite. J. Mater. Sci. Lett 3, 847–849 (1984)CrossRefGoogle Scholar
  13. 13.
    M. Tsunehiro, K. Kensuke, K. Tatsuo, A. Hiromichi, N. Takashi, K. Hiroyuki, W. Yuji, K. Kanji, Heating of ferrite powder by an AC magnetic field for local hyperthermia. Jpn. J. Appl. Phys. 41, 1620–1632 (2002)CrossRefGoogle Scholar
  14. 14.
    N. Sivakumar, S.R.P. Gnanakan, K. Karthikeyan, S. Amaresh, W.S. Yoon, G.J. Park, Y.S. Lee, Nanostructured MgFe2O4 as anode materials for lithium-ion batteries. J. Alloy. Compd. 509, 7038–7041 (2011)CrossRefGoogle Scholar
  15. 15.
    S. Ilhan, S.G. Izotova, A.A. Komlev, Synthesis and characterization of MgFe2O4 nanoparticles prepared by hydrothermal decomposition of co-precipitated magnesium and iron hydroxides. Ceram. Int. 41, 577–585 (2015)CrossRefGoogle Scholar
  16. 16.
    J. Safari, Z. Zarnegar, M. Heydarian, Magnetic Fe3O4 nanoparticles as efficient and reusable catalyst for the green synthesis of 2-amino-4H-chromene in aqueous media. Bull. Chem. Soc. Jpn 85, 1332–1338 (2012)CrossRefGoogle Scholar
  17. 17.
    R.W. De Simone, K.S. Currie, S.A. Mitchell, J.W. Darrow, D.A. Pippin, Privileged structures: applications in drug discovery. Comb. Chem. High Throughput Screen. 7, 473–494 (2004)CrossRefGoogle Scholar
  18. 18.
    J. Safari, Z. Zarnegar, M. Heydarian, Practical, ecofriendly, and highly efficient synthesis of -amino-4H-chromenes using nanocrystalline MgO as a reusable heterogeneous catalyst in aqueous media. J. Taibah Univ. Sci. 7, 17–25 (2013)CrossRefGoogle Scholar
  19. 19.
    I.B. Masesane, ShO Mihigo, Efficient and Green Preparation of 2-Amino-4H-chromenes by a Room-Temperature, Na2CO3-Catalyzed, Three-Component Reaction of Malononitrile, Benzaldehydes, and Phloroglucinol or Resorcinol in Aqueous Medium. Synth. Commun. 45, 21–26 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Farahi, B. Karimi, S. Alipour, L.T. Moghadam, Silica tungstic acid as an efficient and reusable catalyst for the one-pot synthesis of 2-amino-4H-chromene derivatives. Acta Chim. Slov. 61, 94–99 (2014)PubMedPubMedCentralGoogle Scholar
  21. 21.
    H. Kiyani, Recent Advances in Three-Component Cyclocondensation of Dimedone with Aldehydes and Malononitrile for Construction of Tetrahydrobenzo[b]pyrans Using Organocatalysts. Curr. Org. Synth. 15, 1043–1072 (2018)CrossRefGoogle Scholar
  22. 22.
    T.J. Mason, Sonochemistry and the environment-providing a “green” link between chemistry, physics and engineering. Ultrason. Sonochem. 14, 476–483 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    J.L. Luche, Synthetic Organic Sonochemistry (Plenum, New York, 1999)Google Scholar
  24. 24.
    J. Safari, M. Heydarian, Z. Zarnegar, Synthesis of 2-amino-7-hydroxy-4H-chromene derivatives under ultrasound irradiation: a rapid procedure without catalyst. Arab. J. Chem. 10, S2994–S3000 (2017)CrossRefGoogle Scholar
  25. 25.
    J.T. Li, S.-X. Wang, G.-F. Chen, T.-S. Li, Some applications of ultrasound irradiation in organic synthesis. Curr. Org. Synth. 2, 415–436 (2005)CrossRefGoogle Scholar
  26. 26.
    M.F. Mady, A.A. El-Ketab, I.F. Zeid, K.B. Jorgensen, Comparative studies on conventional and ultrasound-assisted synthesis of novel homoallylic alcohol derivatives linked to sulfonyl dibenzene moiety in aqueous media, J. Chem. 2013, 1–9 (2013)CrossRefGoogle Scholar
  27. 27.
    M. Rouhani, A. Ramazani, S.W. Joo, Novel, fast and efficient one-pot sonochemical synthesis of 2-aryl-1,3,4-oxadiazoles. Ultrason. Sonochem. 21, 262–267 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    A. Ramazani, M. Rouhani, S.W. Joo, Catalyst-free sonosynthesis of highly substituted propanamide derivatives in water. Ultrason. Sonochem. 28, 393–399 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    M. Rouhani, A. Ramazani, S.W. Joo, Ultrasonics in isocyanide-based multicomponent reactions: a new, efficient and fast method for the synthesis of fully substituted 1,3,4-oxadiazole derivatives under ultrasound irradiationUltrason. Sonochem. 22, 391–395 (2015)CrossRefGoogle Scholar
  30. 30.
    A. Ramazani, M. Rouhani, F. Zeinali Nasrabadi, F. Gouranlou, Ultrasound-Promoted Three-Component Reaction of N-Isocyaniminotriphenyl Phosphorane, (E)-Cinnamic Acids, and Biacetyl. Phosphorus Sulfur Silicon Relat. Elem. 189, 1–9 (2014)CrossRefGoogle Scholar
  31. 31.
    A. Ramazani, M. Rouhani, S.W. Joo, Org. Chem. Res. 1, 12–17 (2015)Google Scholar
  32. 32.
    M. Rouhani, A. Ramazani, S.W. Joo, Y. Hanifehpour, Very Efficient and Rapid Catalyst-free One-pot Three Component Synthesis of 2,5-Dihydro-5-imino-2-methylfuran-3,4-dicarboxylate Derivatives Under Ultrasound Irradiation. Bull. Korean Chem. Soc. 33, 4127–4130 (2012)CrossRefGoogle Scholar
  33. 33.
    R. Arabian, A. Ramazani, B. Mohtat, V. Azizkhani, S.W. Joo, M. Rouhani, A convenient and efficient protocol for the synthesis of HBIW catalyzed by silica nanoparticles under ultrasound irradiation. J. Energ. Mater. 32, 300–305 (2014)CrossRefGoogle Scholar
  34. 34.
    M. Rouhani, A. Ramazani, Perlite–SO3H nanoparticles: very efficient and reusable catalyst for three-component synthesis of N-cyclohexyl-3-aryl-quinoxaline-2-amine derivatives under ultrasound irradiation. J. Iran. Chem. Soc. 15, 2375–2382 (2018)CrossRefGoogle Scholar
  35. 35.
    J. Safaei Ghomi, Z. Akbarzadeh, Ultrasonic accelerated Knoevenagel condensation by magnetically recoverable MgFe2O4 nanocatalyst: a rapid and green synthesis of coumarins under solvent-free conditions. Ultrason. Sonochem 40, 78–83 (2018)CrossRefGoogle Scholar
  36. 36.
    M. Nasr-Esfahani, M. Montazerozohori, N. Filvan, Ultrasound-assisted catalytic synthesis of acyclic imides in the presence of p-toluenesulfonic acid under solvent-free conditions. J. Serb. Chem. Soc. 77, 415–421 (2012)CrossRefGoogle Scholar
  37. 37.
    S. Asgarzadehahmadi, M. Davoody, R. Afshar Ghotli, A.A. Adul Rahman, R. Parthasarathy, Effect of ultrasonic irradiations on gas–liquid mass transfer coefficient (kLa); experiments and modelling. Measurment 79, 119–129 (2016)Google Scholar
  38. 38.
    N. Sainz Herran, J.L. Cases Lopez, J.A. Sanchez Perez, Gas–liquid mass transfer in sonicated bubble columns. Effect of reactor diameter and liquid height. Ind. Eng. Chem. Res. 51, 2769–2774 (2012)CrossRefGoogle Scholar
  39. 39.
    R. Baharfar, S. Asgari, N. Shariati, Green synthesis of 2-amino-3-cyano-4H-chromenes in water using nano silica-bonded 5-N-propyl-octahydro-pyrimido[1,2, A] azepinium chloride as an effective and reusable nanocatalyst. J. Chil. Chem. Soc. 2, 2900–2904 (2015)Google Scholar
  40. 40.
    R. Hekmatshoar, S. Majedi, K. Bakhtiari, Sodium selenate catalyzed simple and efficient synthesis of tetrahydro benzo[b]pyran derivatives. Catal. Commun. 9, 307–310 (2008)CrossRefGoogle Scholar
  41. 41.
    S. Gao, C.H. Tsai, C. Tseng, C.F. Yao, Fluoride ion catalyzed multicomponent reactions for efficient synthesis of 4H-chromene and N-arylquinoline derivatives in aqueous media. Tetrahedron 64, 9143–9149 (2008)CrossRefGoogle Scholar
  42. 42.
    I. Devi, P.J. Bhuyan, Sodium bromide catalysed one-pot synthesis of tetrahydrobenzo[b]pyrans via a three-component cyclocondensation under microwave irradiation and solvent free conditions. Tetrahedron Lett. 45, 8625–8627 (2004)CrossRefGoogle Scholar
  43. 43.
    S. Balalaie, M. Sheikh-Ahmadi, M. Bararjanian, Tetra-methyl ammonium hydroxide: an efficient and versatile catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives in aqueous media. Catal. Commun. 8, 1724–1728 (2007)CrossRefGoogle Scholar
  44. 44.
    S. Khaksar, A. Rouhollahpour, S.M. Talesh, A facile and efficient synthesis of 2-amino-3-cyano-4H-chromenes and tetrahydrobenzo [b] pyrans using 2, 2, 2-trifluoroethanol as a metal-free and reusable medium. J. Fluorine Chem. 141, 11–15 (2012)CrossRefGoogle Scholar
  45. 45.
    P.P. Salvi, A.M. Mandhare, A.S. Sartape, D.K. Pawar, H.S. Han, S.S. Kolekar, An efficient protocol for synthesis of tetrahydrobenzo[b]pyrans using amino functionalized ionic liquid. C. R. Chim. 14, 878–882 (2011)CrossRefGoogle Scholar
  46. 46.
    S. Nemouchi, R. Boulcina, B. Carboni, A. Debache, Phenylboronic acid as an efficient and convenient catalyst for a three-component synthesis of tetrahydrobenzo[b]pyrans. C. R. Chim. 15, 394–398 (2012)CrossRefGoogle Scholar
  47. 47.
    J. Zheng, Y. Li, Basic ionic liquid-catalyzed multicomponent synthesis of tetrahydrobenzo[b]pyrans and pyrano[c]chromenes. Mendeleev Commun. 21, 280–281 (2011)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations