TiO2 nanoparticles and ionic liquid platform for selective electrochemical determination of indacaterol in pharmaceutical formulations and human fluids: application to content uniformity

  • 29 Accesses


The present work described the first voltammetric sensor for the estimation of indacaterol (IND) in the presence of its co-formulated drug glycopyrronium bromide. Indacaterol (IND) is used to treat chronic obstructive pulmonary disease, which is a major cause of morbidity and mortality worldwide so the quick analysis of minor concentrations of this drug is very important. Titanium(IV) oxide nanoparticles (TiO2-NPs) and the ionic liquid (IL) n-hexyl-3-methylimidazolium hexafluorophosphate were used for the new formulated carbon paste electrode. Other factors, such as the pH of the solution, the TiO2-NP concentration and the scan rate, were also optimized using cyclic voltammetry. Scanning electron microscopy, chronoamperometry and electrochemical impedance spectroscopy were utilized for determination of the character of the electrochemical sensor. Moreover, the electrochemical redox mechanism of IND at the proposed sensor was studied. Under the optimum conditions, the proposed TiO2-NP–IL–MCPE showed good linearity over a concentration range of 2.00 nM–200.00 mM using square wave voltammetry. The LOD was found to be 500 pM, indicating excellent sensitivity. Satisfactory recoveries of IND from pharmaceutical formulations, content uniformity tests and human plasma and urine were achieved, clearly revealing that the new sensor can be used in the clinical analysis of IND and in quality control laboratories.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    J.E. Frampton, QVA149 (indacaterol/glycopyrronium fixed-dose combination): a review of its use in patients with chronic obstructive pulmonary disease. Drugs 74, 465 (2014)

  2. 2.

    M.J. O’Neil, The Merck index: an encyclopedia of chemicals, drugs, and biologicals, 15th edn. (RSC Publishing, Cambridge, 2013)

  3. 3.

    Y.A. Salem, D.T. Sherbiny, D.R. Wasseef, S.M. Ashry, HPLC determination of indacaterol maleate in pharmaceutical preparations adopting ultraviolet and fluorescence detection. Int. J. Pharm Sci. Res. 6(2), 1324–1332 (2015)

  4. 4.

    S. Zayed, F. Belal, Rapid simultaneous determination of indacaterol maleate and glycopyrronium bromide in inhaler capsules using a validated stability-indicating monolithic LC method. Chem. Cent. J. 11, 1–36 (2017)

  5. 5.

    C. Emotte, O. Heudi, F. Deglave, A. Bonvie, L. Masson, F. Picard, O. Kretz, Validation of an on-line solid-phase extraction method coupled to liquid chromatography–tandem mass spectrometry detection for the determination of Indacaterol in human serum. J. Chromatogr. B Biomed. Sci. Appl. 1(895), 1–9 (2012)

  6. 6.

    W.G. Ammari, Z. Al-Qadhi, M. Khalil, R. Tayyem, S. Qammaz, G. Oriquat, H. Chrystyn, Indacaterol determination in human urine: validation of a liquid–liquid extraction and liquid chromatography–tandem mass spectrometry analytical method. J. Aerosol Med. Pulm. Drug Deliv. 28(3), 202–210 (2015)

  7. 7.

    S.M. El-Ashry, D.R. El-Wasseef, D.T. El-Sherbiny, Y.A. Salem, Spectrophotometric and spectrofluorimetric determination of indacaterol maleate in pure form and pharmaceutical preparations: application to content uniformity. J. Lumin. 30(6), 891–897 (2015)

  8. 8.

    Y.A. Salem, D.T. El-Sherbiny, D.R. El-Wasseef, S.M. El-Ashry, Spectroscopic study on indacaterol maleate: analytical applications for quality control of capsules. Int. J. Pharm Sci. Res. 6, 592–605 (2015)

  9. 9.

    M.F.A. Ghany, L.A. Hussein, N. Magdy, H.Z. Yamani, Simultaneous spectrophotometric determination of indacaterol and glycopyrronium in a newly approved pharmaceutical formulation using different signal processing techniques of ratio spectra. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 157(15), 251–257 (2016)

  10. 10.

    N.J. Ronkainen, H.B. Halsall, W.R. Heineman, Electrochemical biosensors. Chem. Soc. Rev. 39(5), 1747–1763 (2010)

  11. 11.

    N.N. Salama, H.E. Zaazaa, S.M. Azab, S.A. Atty, N.M. El-Kosy, M.Y. Salem, A novel cesium modified carbon paste electrode for rapid selective determination of ropinirole in presence of co-administered and interference substances. Sens. Actuators B Chem. 240, 1291–1301 (2017)

  12. 12.

    S.A. Atty, G.A. Sedik, F.A. Morsy, D.M. Naguib, H.E. Zaazaa, A novel sensor aluminum silicate modified carbon paste electrode for determination of anti-depressant dothiepin HCl in pharmaceutical formulation and biological fluids. Microchem. J. 1(148), 725–734 (2019)

  13. 13.

    R.C. Alkire, Y. Gogotsi, P. Simon, Nanostructured Materials in Electrochemistry (Wiley, New York, 2008)

  14. 14.

    C. Cai, J. Chen, Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal. Biochem. 332, 75–83 (2004)

  15. 15.

    N.N. Salama, H.E. Zaazaa, S.M. Azab, S.A. Atty, N.M. El-Kosy, M.Y. Salem, Utility of gold nanoparticles/silica modified electrode for rapid selective determination of mebeverine in micellar medium: comparative discussion and application in human serum. Ionics 22(6), 957–966 (2016)

  16. 16.

    M. Mazloum-Ardakani, H. Beitollahi, M.K. Amini, F. Mirkhalaf, M. Abdollahi-Alibeik, New strategy for simultaneous and selective voltammetric determination of norepinephrine, acetaminophen and folic acid using ZrO2 nanoparticles-modified carbon paste electrode. Sens. Actuators B 151(1), 243–294 (2010)

  17. 17.

    M.A. Mohamed, S.A. Atty, H.A. Merey, T.A. Fattah, C.W. Foster, C.E. Banks, Titanium nanoparticles (TiO2)/graphene oxide nanosheets (GO): an electrochemical sensing platform for the sensitive and simultaneous determination of benzocaine in the presence of antipyrine. Analyst 142(19), 3674–3679 (2017)

  18. 18.

    M. Beytur, F. Kardaş, O. Akyıldırım, A. Özkan, B. Bankoğlu, H. Yüksek, M.L. Yola, N. Atar, A highly selective and sensitive voltammetric sensor with molecularly imprinted polymer based silver@gold nanoparticles/ionic liquid modified glassy carbon electrode for determination of ceftizoxime. J. Mol. Liq. 251, 212–217 (2018)

  19. 19.

    S. Mert, B. Bankoğlu, A. Özkan, N. Atar, M.L. Yola, Electrochemical sensing of ractopamine by carbon nitride nanotubes/ionic liquid nanohybrid in presence of other β-agonists. J. Mol. Liq. 254, 8–11 (2018)

  20. 20.

    S. Salmanpour, A. Sadrnia, F. Karimi, N. Majani, M.L. Yola, V.K. Gupta, NiO nanoparticle decorated on single-wall carbon nanotubes and 1-butyl-4-methylpyridinium tetrafluoroborate for sensitive raloxifene sensor. J. Mol. Liq. 254, 255–259 (2018)

  21. 21.

    H. Medetalibeyoğlu, S. Manap, Ö.A. Yokuş, M. Beytur, F. Kardaş, O. Akyıldırım, V. Özkan, H. Yüksek, M.L. Yola, N. Atar, Fabrication of Pt/Pd nanoparticles/polyoxometalate/ionic liquid nanohybrid for electrocatalytic oxidation of methanol. J. Electrochem. Soc. 165(5), F338–F341 (2018)

  22. 22.

    M.L. Yola, C. Göde, N. Atar, Determination of rutin by CoFe2O4 nanoparticles ionic liquid nanocomposite as a voltammetric sensor. J. Mol. Liq. 246, 350–353 (2017)

  23. 23.

    United States Pharmacopoeial Convention, United States Pharmacopoeia, USP 35 NF 25 Inc., USA 905, Rockville. MD, (2013)

  24. 24.

    R.G. Compton, C.E. Banks, Understanding Voltammetry (World Scientific, Singapore, 2011)

  25. 25.

    A.A. Ensafi, H. Bahrami, B. Rezaei, H. Karimi-Maleh, Application of ionic liquid–TiO2 nanoparticle modified carbon paste electrode for the voltammetric determination of benserazide in biological samples. Mater. Sci. Eng. C 33(2), 831–835 (2013)

  26. 26.

    B. Nigović, S. Jurić, A. Mornar, I. Malenica, Electrochemical studies of ropinirole, an anti-Parkinson’s disease drug. J. Chem. Sci. 125(5), 1197–1205 (2013)

  27. 27.

    D.K. Gosser, Cyclic Voltammetry, Simulation and Analysis of Reaction Mechanism (Wiley-VCH, New York, 1993)

  28. 28.

    E. Laviron, L. Roullier, C.A. Degrand, A multilayer model for the study of space distributed redox modified electrodes: part II. Theory and application of linear potential sweep voltammetry for a simple reaction. J. Electroanal. Chem. Interfacial Electrochem. 112(1), 11–23 (1980)

  29. 29.

    J. Brade, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical Methods: Fundamentals and Applications, vol. 5 (Wiley, New York, 1980)

  30. 30.

    ICH Q2R1, Validation of Analytical Procedures, Proceedings of the International Conference on Harmonization, Geneva, (2005)

  31. 31.

    M. Kagan, J. Dain, L. Peng, C. Reynolds, Metabolism and pharmacokinetics of indacaterol in humans. Drug Metab. Pharmacokinet. 40(9), 1712–1722 (2012)

Download references

Author information

Correspondence to Shimaa A. Atty.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Atty, S.A., Ghany, M.F.A., Hussein, L.A. et al. TiO2 nanoparticles and ionic liquid platform for selective electrochemical determination of indacaterol in pharmaceutical formulations and human fluids: application to content uniformity. J IRAN CHEM SOC 17, 383–395 (2020).

Download citation


  • Indacaterol
  • TiO2 nanoparticles
  • Ionic liquid
  • Square wave voltammetry
  • Plasma
  • Urine