Journal of the Iranian Chemical Society

, Volume 17, Issue 2, pp 367–382 | Cite as

An enzymatic performance for a new swift magnetically detachable bio-conjugate of Candida rugosa lipase with modified Fe3O4–graphene oxide nanocomposite

  • Faranak Jafarian
  • Abdol-Khalegh BordbarEmail author
  • Atefeh Zare
  • Esmaeil Shams-Solari
Original Paper


The high stability, reusability, half-life, and catalytic activity, accompanied by facile separation from the reaction products, are essential for fulfilling the promise of biocatalysts for different applications in analytical and industrial processes. Here, the Candida rugosa lipase (CRL) immobilization on a new chemically modified, magnetically coated graphene oxide nanosheets is presented. The synthesis, modification, and CRL immobilization operations are monitored and verified through XRD, VSM, FT-IR, TEM, SEM, EDS, UV−Vis, and AFM techniques. The appraisal of operational parameters reveals the high-grade reusability, high pH, thermal, and storage stability of the synthesized swift magnetically detachable biocatalyst. The molecular interpretation of this catalytic performance represents by enzyme–enzyme and enzyme–product interactions. This unique magnetic bio-conjugate with outstanding performance recommends for analytical and industrial applications in a wide range of temperature and pH.

Graphic abstract


Candida rugosa lipase (CRL) Immobilization Stability Graphene oxide Nanocomposite Magnetic bio-conjugate (MBC) 



The financial supports of the Research Council of Isfahan University and Iran National Science Foundation (Grant Number 96007105) are gratefully acknowledged.


  1. 1.
    K.E. Jaeger, T. Eggert, Curr. Opin. Biotechnol. 13(4), 390–397 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    M. Aarthy, P. Saravanan, M.K. Gowthaman, C. Rose, N.R. Kamini, Chem. Eng. Res. Des. 92(8), 1591–1601 (2014)CrossRefGoogle Scholar
  3. 3.
    S. Hama, H. Noda, A. Kondo, Curr. Opin. Biotechnol. 50, 57–64 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    G. Rabbani, E. Ahmad, M.V. Khan, M.T. Ashraf, R. Bhat, R.H. Khan, RSC Adv. 5, 20115–20131 (2015)CrossRefGoogle Scholar
  5. 5.
    C. Rivero, J. Palomo, Catalysts 6, 115 (2016)CrossRefGoogle Scholar
  6. 6.
    C. Garcia-Galan, Á. Berenguer-Murcia, R. Fernandez-Lafuente, R.C. Rodrigues, Adv. Synth. Catal. 353, 2885–2904 (2011)CrossRefGoogle Scholar
  7. 7.
    S. Hirsh, M. Bilek, N. Nosworthy, A. Kondyurin, C.D. Remedios, D.A. McKenzie, Langmuir 26, 14380–14388 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    J. Zdarta, A.S. Meyer, T. Jesionowski, M. Pinelo, Catalysts 8(2), 1–27 (2018)CrossRefGoogle Scholar
  9. 9.
    E. Vassiliadi, A. Xenakis, M. Zoumpanioti, Mol. Catal. 445, 206–212 (2018)CrossRefGoogle Scholar
  10. 10.
    Y. Wang, Y.L. Hsieh, J. Membr. Sci. 309, 73–81 (2008)CrossRefGoogle Scholar
  11. 11.
    L. Fernandez-Lopez, S.G. Pedrero, N. Lopez-Carrobles, J.J. Virgen-Ortíz, B.C. Gorines, C. Otero, R. Fernandez-Lafuente, Process Biochem. 54, 81–88 (2017)CrossRefGoogle Scholar
  12. 12.
    H. Jia, G. Zhu, P. Wang, Biotechnol. Bioeng. 84, 406–414 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Q. Husain, Biocatalysis 3, 37–53 (2017)CrossRefGoogle Scholar
  14. 14.
    R. Cui, C. Bai, Y. Jiang, M. Hu, S. Li, Q. Zhai, Chem. Eng. J. 259, 640–646 (2015)CrossRefGoogle Scholar
  15. 15.
    H.P. Singh, N. Gupta, R.K. Sharma, Catal. Lett. 143(12), 1304–1311 (2013)CrossRefGoogle Scholar
  16. 16.
    E. Ranjbakhsh, A.K. Bordbar, M. Abbasi, A.R. Khosropour, E. Shams, Chem. Eng. J. 179, 272–276 (2012)CrossRefGoogle Scholar
  17. 17.
    W. Feng, P. Ji, Biotechnol. Adv. 29, 889–895 (2011)PubMedCrossRefGoogle Scholar
  18. 18.
    H. Qiu, C. Xu, X. Huang, Y. Ding, Y. Qu, P. Gao, J. Phys. Chem. C 113(6), 2521–2525 (2009)CrossRefGoogle Scholar
  19. 19.
    A. Zare, A.-K. Bordbar, F. Jafarian, S. Tangestaninejad, J. Mol. Liq. 254, 137–144 (2018)CrossRefGoogle Scholar
  20. 20.
    K. Khoshnevisan, A.-K. Bordbar, D. Zare, D. Davoodi, M. Noruzi, M. Barkhi, M. Tabatabaeid, Chem. Eng. J. 171, 669–673 (2011)CrossRefGoogle Scholar
  21. 21.
    L.M. Rossi, N.J.S. Costa, F.P. Silva, R. Wojcieszak, Green Chem. 16, 2906–2933 (2014)CrossRefGoogle Scholar
  22. 22.
    T.N. Narayanan, A.P. Reena Mary, P.K. Anas Swalih, D. Sakthi Kumar, D. Makarov, M. Albrecht et al., J. Nanosci. Nanotechnol. 11, 1958–1967 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    V. Chabot, D. Higgins, A. Yu, X. Xiao, Z. Chen, J. Zhang, Science 7, 1564–1596 (2014)Google Scholar
  24. 24.
    J. Zhang, F. Zhang, H. Yang, X. Huang, H. Liu, S. Guo, Langmuir 26, 6083–6085 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    M.E. Khan, M.M. Khan, M.H. Cho, New J. Chem. 39, 8121–8812 (2015)CrossRefGoogle Scholar
  26. 26.
    J. Byun, J. Microbiol. Biotechnol. 25(2), 145–151 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    J. Shen, Y. Hu, M. Shi, N. Li, H. Ma, M. Ye, J. Phys. Chem. 114(3), 1498–1503 (2010)Google Scholar
  28. 28.
    T.N. Narayanan, Z. Liu, P.R. Lakshmy, W. Gao, Y. Nagaoka, D. Sakthi Kumar, J. Lou, R. Vajtai, P.M. Ajayan, Carbon 50, 1338–1345 (2012)CrossRefGoogle Scholar
  29. 29.
    Q. Chang, J. Huang, Y. Ding, H. Tang, Molecules 21(8), 1044 (2016)PubMedCentralCrossRefGoogle Scholar
  30. 30.
    V. Mehnati-Najafabadi, A. Taheri-Kafrani, A.-K. Bordbar, Int. J. Biol. Macromol. 107(1), 418–425 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Y. Li, X.-Y. Wang, X.-P. Jiang, J.-J. Ye, Y.-W. Zhang, X.-Y. Zhang, J. Nanopart. Res. 17, 8 (2015)CrossRefGoogle Scholar
  32. 32.
    F. Jafarian, A.-K. Bordbar, A. Zare, A. Khosropour, Int. J. Biol. Macromol. 111, 1166–1174 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, J. Am. Chem. Soc. 130(18), 5856–5857 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    X. Yang, X. Zhang, Y. Ma, Y. Huang, Y. Wang, Y. Chen, J. Mater. Chem. 19, 2710–2714 (2009)CrossRefGoogle Scholar
  35. 35.
    M.M. Bradford, Anal. Biochem. 72, 248–254 (1976)PubMedCrossRefGoogle Scholar
  36. 36.
    C. Huggins, J. Lapides, J. Biol. Chem. 170, 467–482 (1974)Google Scholar
  37. 37.
    D. Gilham, R. Lehner, Methods. Methods 36, 139–147 (2005)PubMedCrossRefGoogle Scholar
  38. 38.
    R.A. Sheldon, S.V. Pelt, Chem. Soc. Rev. 42, 6223–6235 (2013)PubMedCrossRefGoogle Scholar
  39. 39.
    H. El Ghandoor, H. Zidan, M.M. Khalil, M. Ismail, Int. J. Electrochem. Sci. 7(6), 5734–5745 (2012)Google Scholar
  40. 40.
    F. He, J. Fan, D. Ma, L. Zhang, C. Leung, H.L. Chan, Carbon 48, 3139–3144 (2010)CrossRefGoogle Scholar
  41. 41.
    S.F. Chin, K.S. Iyer, C.L. Raston, Lab Chip 8, 439–442 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    J. Chen, J. Leng, X. Yang, L. Liao, L. Liu, A. Xiao, Molecules 22(2), 221 (2017)PubMedCentralCrossRefGoogle Scholar
  43. 43.
    G. Ozyilmaz, J. Mol. Catal B Enzyme. 56, 231–236 (2009)CrossRefGoogle Scholar
  44. 44.
    A. Manrich, A. Komesu, W.S. Adriano, P.W. Tardioli, Appl. Biochem. Biotechnol. 161, 455–467 (2010)PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of IsfahanIsfahanIran

Personalised recommendations