Advertisement

Preparation and characterization of SrO/MgO nanocomposite as a novel and efficient base catalyst for biodiesel production from waste cooking oil: a statistical approach for optimization

  • 21 Accesses

Abstract

The purpose of this study was to develop and optimize the liquid-phase transesterification reaction of waste cooking oil with methanol over a solid base catalyst using a 3-level 4-factor Box–Behnken statistical design (BBD). New and efficient solid base SrO/MgO catalysts with different molar ratios of Sr to Mg were synthesized by the co-precipitation method followed by calcinations at 850 °C for 5 h. Techniques such as AAS, Hammett indicator procedure, CO2-TPD, SEM, FT-IR, BET and XRD were used for characterization of the catalysts. The results of the Hammett indicator procedure and CO2-TPD analysis confirm the generation of superbasicity on the surface of SrO/MgO catalyst. The SrO/MgO (3:7) catalyst has higher activity in comparison with the other samples. The effects of four process-based factors including catalyst amount, temperature, methanol/oil molar ratio and reaction time on the yield of biodiesel were studied. Analysis of variance was applied to study the impacts of the main factors and their interactions. The optimized conditions (catalyst amount 0.1 g, ME/oil molar ratio 7.77, temperature 50.16 °C and reaction time 1.37 h) predicted by BBD were in great accord with the experimental results and obtained 87.49% biodiesel yield. The effect of catalyst recycling and reusability potential of synthesized catalyst samples were studied. The stability and reusability of catalysts prepared by co-precipitation method were much more than those of catalysts prepared by impregnation method.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Abbreviations

AAS:

Atomic absorption spectroscopy

Adj R-squared:

Adjusted R-squared

ANOVA:

Analysis of variance

ASTM:

American Society for Testing and Materials

BBD:

Box–Behnken statistical design

BET:

Brunauer–Emmett–Teller

CCD:

Central composite design

CO2 TPD:

Carbon dioxide temperature programmed desorption

FAME:

Fatty acid methyl esters

FFA:

Free fatty acids

FID:

Flame ionization detector

FT-IR:

Fourier transform infrared

GC–MS:

Gas chromatography mass spectrometry

IM:

Impregnation method

ME:

Methanol

RSM:

Response surface methodology

RSREG:

Response surface regression

Pred R-squared:

Predicted R-squared

SEM:

Scanning electron microscopy

S/N:

Signal-to-noise ratio

TCD:

Thermal conductivity detector

3-D surface:

Three-dimensional response surfaces

WCO:

Waste cooking oil

WCPO:

Waste cooking palm oil

wt%:

Weight percent

XRD:

X-ray diffraction

Y:

Yield

References

  1. 1.

    I. Reyero, G. Arzamendi, S. Zabala, L.M. Gandía, Fuel Process. Technol. 129, 147 (2015)

  2. 2.

    A. Islam, Y.H. Taufiq-Yap, E.S. Chan, M. Moniruzzaman, S. Islam, M.N. Nabi, Energy Convers. Manag. 88, 1200 (2014)

  3. 3.

    J.Y. Dai, D.Y. Li, Y.C. Zhao, Z.L. Xiu, Ind. Eng. Chem. Res. 53, 9325 (2014)

  4. 4.

    A.A. Ceron, R.N.V. Boas, F.C. Biaggio, H.F. de Castro, Biomass Bioenergy 119, 166 (2018)

  5. 5.

    S.A.A. Kumar, G. Sakthinathan, R. Vignesh, J.R. Banu, H. Ala’a, Fuel 253, 921 (2019)

  6. 6.

    M.A.M. Farid, M.A. Hassan, Y.H. Taufiq-Yap, Y. Shirai, M.Y. Hasan, M.F. Zakaria, J. Clean. Prod. 165, 262 (2017)

  7. 7.

    E.H.S. Moecke, R. Feller, H.A. Santos, M.M. Machado, A.L.V. Cubas, A.R.A. Dutra, L.L.V. Santos, S.R. Soares, J. Clean. Prod. 135, 679 (2016)

  8. 8.

    M.J. Borah, A. Das, V. Das, N. Bhuyan, D. Deka, Fuel 242, 345 (2019)

  9. 9.

    Z. Yaakob, M. Mohammad, M. Alherbawi, Z. Alam, K. Sopian, Renew. Sustain. Energyy Rev. 18, 184 (2013)

  10. 10.

    E.G.S. Junior, V.H. Perez, I. Reyero, A. Serrano-Lotina, O.R. Justo, Fuel 241, 311 (2019)

  11. 11.

    D.N. Thoai, C. Tongurai, K. Prasertsit, A. Kumar, Fuel Process. Technol. 168, 97 (2017)

  12. 12.

    M. Hapońska, C. Nurra, S. Abelló, M. Makkee, J. Salvadó, C. Torras, Fuel Process. Technol. 185, 1 (2019)

  13. 13.

    M. Kouzu, A. Fujimori, R. Fukakusa, N. Satomi, S. Yahagi, Fuel Process. Technol. 181, 311 (2018)

  14. 14.

    S. Gryglewicz, Appl. Catal. A 192, 23 (2000)

  15. 15.

    M. Farooq, A. Ramli, D. Subbarao, J. Clean. Prod. 59, 131 (2013)

  16. 16.

    P. Mierczynski, R. Ciesielski, A. Kedziora, W. Maniukiewicz, O. Shtyka, J. Kubicki, J. Albinska, T.P. Maniecki, Catal. Lett. 145, 1196 (2015)

  17. 17.

    W. Xie, H. Peng, L. Chen, Appl. Catal. A 300, 67 (2006)

  18. 18.

    W. Chen, Z. Huang, Y. Liu, Q. He, Catal. Commun. 9, 516 (2008)

  19. 19.

    W. Xie, Z. Yang, Catal. Lett. 117, 159 (2007)

  20. 20.

    A.B. Fadhil, E.T.B. Al-Tikrity, A.M. Khalaf, Fuel 234, 81 (2018)

  21. 21.

    V. Mahdavi, F. Abedini, Chem. Eng. Commun. 203, 114 (2016)

  22. 22.

    H. Lee, Y. Taufiq-Yap, Process Saf. Environ. Prot. 94, 430 (2015)

  23. 23.

    W. Xie, L. Zhao, Energy Convers. Manag. 79, 34 (2014)

  24. 24.

    E. Rashtizadeh, F. Farzaneh, J. Taiwan Inst. Chem. Eng. 44, 917 (2013)

  25. 25.

    M.B. Gawande, R.K. Pandey, R.V. Jayaram, Catal. Sci. Technol. 2, 1113 (2012)

  26. 26.

    W. Xie, Y. Liu, H. Chun, Catal. Lett. 142, 352 (2012)

  27. 27.

    Y.H. Taufiq-Yap, Y.H.H.V. Lee, R. Yunus, J.C. Juan, Chem. Eng. J. 178, 342 (2011)

  28. 28.

    M.O. Guerrero-Pérez, Catal. Today 285, 226 (2017)

  29. 29.

    B. Yoosuk, P. Krasae, B. Puttasawat, P. Udomsap, N. Viriya-empikul, K. Faungnawakij, Chem. Eng. J. 162, 58 (2010)

  30. 30.

    K. Faungnawakij, B. Yoosuk, S. Namuangruk, P. Krasae, N. Viriya-empikul, B. Puttasawat, ChemCatChem 4, 209 (2012)

  31. 31.

    J. Tantirungrotechai, S. Thepwatee, B. Yoosuk, Fuel 106, 279 (2013)

  32. 32.

    A.P.S. Dias, J. Bernardo, P. Felizardo, M.J.N. Correia, Fuel Process. Technol. 102, 146 (2012)

  33. 33.

    W.N.N.W. Omar, N.A.S. Amin, Fuel Process. Technol. 92, 2397 (2011)

  34. 34.

    M. Joshaghani, D. Yazdani, A.A. Zinatizadeh, J. Iran. Chem. Soc. 14, 2449 (2017)

  35. 35.

    R.H. Myers, D.C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiment, 2nd edn. (Wiley, New York, 2002)

  36. 36.

    G.E. Box, N.R. Draper, Empirical Model-Building and Response Surfaces (Wiley, New York, 1987)

  37. 37.

    S. Perincek, K. Duran, J. Clean. Prod. 135, 1179 (2016)

  38. 38.

    M. Kumar, M.P. Sharma, Waste Biomass Valoriz. 7, 1105 (2016)

  39. 39.

    A. Avinash, A. Murugesan, Fuel 216, 322 (2018)

  40. 40.

    G. Dwivedi, M.P. Sharma, Fuel 145, 256 (2015)

  41. 41.

    V. Mahdavi, A. Monajemi, J. Taiwan Inst. Chem. Eng. 45, 2286 (2014)

  42. 42.

    W.N.N.W. Omar, N.A.S. Amin, Biomass Bioenergy 35, 1329 (2011)

  43. 43.

    O.A. Aworanti, S.E. Agarry, A.O. Ajani, Br. Biotechnol. J. 3(2), 116132 (2013)

  44. 44.

    H. Hamze, M. Akia, F. Yazdani, Process Saf. Environ. Prot. 94, 1 (2015)

  45. 45.

    K.S. Kabo, A.R. Yacob, W.A.W.A. Bakar, N.A. Buang, A.M. Bello, A. Ruskam, IOP Conf. Ser. Mater. Sci. Eng. 136(012063), 1 (2016)

  46. 46.

    A. Witek-Krowiak, K. Chojnacka, D. Podstawczyk, A. Dawiec, K. Pokomeda, Bioresour. Technol. 160, 150 (2014)

  47. 47.

    J. Zolgharnein, A. Shahmoradi, J.B. Ghasemi, J. Chemom. 27, 12 (2013)

  48. 48.

    N. Boz, M. Kara, Chem. Eng. Commun. 196, 80 (2008)

  49. 49.

    K. Tanabe, M. Misono, Y. Ono, H. Hattori, Stud. Surf. Sci. Catal. 51, 14 (1989)

  50. 50.

    W. Xu, L. Gao, S. Wang, G. Xiao, Bioresour. Technol. 159, 286 (2014)

  51. 51.

    T. Maneerung, S. Kawi, C.H. Wang, Energy Convers. Manag. 92, 234 (2015)

  52. 52.

    V. Mahdavi, H.R. Hasheminasab, Phys. Chem. Res. 3, 111 (2015)

Download references

Acknowledgements

This work is supported by the Arak University, Iran, so authors sincerely thank the research council of Arak University.

Author information

Correspondence to Vahid Mahdavi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shahbazi, F., Mahdavi, V. & Zolgharnein, J. Preparation and characterization of SrO/MgO nanocomposite as a novel and efficient base catalyst for biodiesel production from waste cooking oil: a statistical approach for optimization. J IRAN CHEM SOC 17, 333–349 (2020). https://doi.org/10.1007/s13738-019-01772-6

Download citation

Keywords

  • Optimization
  • Biodiesel
  • Waste cooking oil
  • SrO/MgO catalyst
  • Box–Behnken design