Combination of NiWO4 and polyaniline with TiO2: fabrication of ternary photocatalysts with highly visible-light-induced photocatalytic performances

  • Aziz Habibi-YangjehEmail author
  • Solmaz Feizpoor
Original Paper


The designing and fabrication of TiO2-based nanocomposites with remarkable photocatalytic efficiency to eliminate different contaminants from the environment are major goals in the research communities. Therefore, in the present work, nickel tungstate (NiWO4) and polyaniline (PA) were used to boost photoactivity of TiO2 upon visible light. The photocatalysts were studied by different instruments. The outcomes represented that the TiO2/NiWO4/PA samples possess notably photocatalytic efficiency in comparison with the TiO2 and TiO2/NiWO4 photocatalysts. The highest photocatalytic ability belonged to the TiO2/NiWO4/PA (30%) photocatalyst, which was nearly 8.2-, 9.3-, 15.5-, 7.2-, and 10.8-fold as high as the bare TiO2 for photoreduction of Cr(VI) and removals of MB, RhB, MO, and fuchsine, respectively. Furthermore, the TiO2/NiWO4/PA (30%) nanocomposite possessed great durability in continuous photocatalytic reactions. According to the outcomes, the ternary TiO2/NiWO4/PA (30%) photocatalyst can be considered as a beneficial nanocomposite for environmental applications.


TiO2/NiWO4/PA TiO2 Water pollutants Visible-light-driven photocatalyst 



Financial support from University of Mohaghegh Ardabili is highly appreciated.


  1. 1.
    Y. Zhang, B. Wu, H. Xu, H. Liu, M. Wang, Y. He, B. Pan, Nanomaterials-enabled water and wastewater treatment. NanoImpact 3, 22–39 (2016)CrossRefGoogle Scholar
  2. 2.
    C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, A.B. Pandit, A critical review on textile wastewater treatments: possible approaches. J. Environ. Manag. 182, 351–366 (2016)CrossRefGoogle Scholar
  3. 3.
    Z. Xing, J. Zhang, J. Cui, J. Yin, T. Zhao, J. Kuang, Z. Xiu, N. Wan, W. Zhou, Recent advances in floating TiO2-based photocatalysts for environmental application. Appl. Catal. B 225, 452–467 (2017)CrossRefGoogle Scholar
  4. 4.
    S. Giannakis, S. Rtimi, C. Pulgarin, Light-assisted advanced oxidation processes for the elimination of chemical and microbiological pollution of wastewaters in developed and developing Countries. Molecules 22, 1070–1091 (2017)CrossRefPubMedCentralGoogle Scholar
  5. 5.
    D. Masih, Y. Ma, S. Rohani, Graphitic C3N4 based noble-metal-free photocatalyst systems: a review. Appl. Catal. B 206, 556–588 (2017)CrossRefGoogle Scholar
  6. 6.
    X. Jin, L. Ye, H. Xie, G. Chen, Bismuth-rich bismuth oxyhalides for environmental and energy photocatalysis. Coord. Chem. Rev. 349, 84–101 (2017)CrossRefGoogle Scholar
  7. 7.
    C. Sushma, S.G. Kumar, Advancements in the zinc oxide nanomaterials for efficient photocatalysis. Chem. Pap. 71, 2023–2042 (2017)CrossRefGoogle Scholar
  8. 8.
    K. Qi, B. Cheng, J. Yu, W. Ho, A review on TiO2-based Z-scheme photocatalysts. Chin. J. Catal. 38, 1936–1955 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Pirhashemi, A. Habibi-Yangjeh, S. Rahim-Pouran, Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. J. Ind. Eng. Chem. 29, 1719–1747 (2018)Google Scholar
  10. 10.
    M. Mousavi, A. Habibi-Yangjeh, S. Rahim Pouran, Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts. J. Mater. Sci.: Mater. Electron. 29, 1719–1747 (2018)Google Scholar
  11. 11.
    M. Shekofteh-Gohari, A. Habibi-Yangjeh, M. Abitorabi, A. Rouhi, Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: a review. Crit. Rev. Environ. Sci. Technol. 48, 806–857 (2018)CrossRefGoogle Scholar
  12. 12.
    M. Ge, J. Cai, J. Iocozzia, C. Cao, J. Huang, X. Zhang, J. Shen, S. Wang, S. Zhang, K.-Q. Zhang, Y. Lai, Z. Lin, A review of TiO2 nanostructured catalysts for sustainable H2 generation. Int. J. Hydrog. Energy 42, 8418–8449 (2017)CrossRefGoogle Scholar
  13. 13.
    J. Lowa, B. Chenga, J. Yua, Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl. Surf. Sci. 392, 658–686 (2017)CrossRefGoogle Scholar
  14. 14.
    N.R. Khalid, A. Majid, M.B. Tahir, N.A. Niaz, S. Khalid, Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: a review. Ceram. Int. 43, 14552–14571 (2017)CrossRefGoogle Scholar
  15. 15.
    C.S. Uyguner-Demirel, N.C. Birben, M. Bekbolet, Elucidation of background organic matter matrix effect on photocatalytic treatment of contaminants using TiO2: a review. Catal. Today 284, 202–214 (2017)CrossRefGoogle Scholar
  16. 16.
    K.M. Reza, A.S.W. Kurny, F. Gulshan, Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appl. Water Sci. 7, 1569–1578 (2017)CrossRefGoogle Scholar
  17. 17.
    Z. Shayegan, C.-S. Lee, F. Haghighat, TiO2 photocatalyst for removal of volatile organic compounds in gas phase—a review. Chem. Eng. J. 334, 2408–2439 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Humayun, F. Raziq, A. Khan, W. Luo, Modification strategies of TiO2 for potential applications in photocatalysis: a critical review. Green Chem. Lett. Rev. 11, 86–102 (2018)CrossRefGoogle Scholar
  19. 19.
    H. Hou, F. Gao, M. Shang, L. Wang, J. Zheng, Z. Yang, J. Xu, W. Yang, Enhanced visible-light responsive photocatalytic activity of N-doped TiO2 thoroughly mesoporous nanofibers. J. Mater. Sci.: Mater. Electron. 28, 3796–3805 (2017)Google Scholar
  20. 20.
    L. Ji, Y. Zhang, S. Miao, M. Gong, X. Liu, In situ synthesis of carbon doped TiO2 nanotubes with an enhanced photocatalytic performance under UV and visible light. Carbon 125, 544–550 (2017)CrossRefGoogle Scholar
  21. 21.
    M. Malligavathy, S. Iyyapushpam, S.T. Nishanthi, D.P. Padiyan, Photoreduction synthesis of silver on Bi2O3/TiO2 nanocomposites and their catalytic activity for the degradation of methyl orange. J. Mater. Sci.: Mater. Electron. 28, 18307–18321 (2017)Google Scholar
  22. 22.
    M. Zalfani, Z.-Y. Hu, W.-B. Yu, M. Mahdouani, R. Bourguiga, M. Wu, Y. Li, G.V. Tendeloo, Y. Djaoued, B.-L. Su, BiVO4/3DOM TiO2 nanocomposites: effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants. Appl. Catal. B 205, 121–132 (2017)CrossRefGoogle Scholar
  23. 23.
    D. Sánchez-Rodríguez, M.G.M. Medrano, H. Remita, V. Escobar-Barrios, Photocatalytic properties of BiOCl–TiO2 composites for phenol photodegradation. J. Environ. Chem. Eng. 6, 1601–1612 (2018)CrossRefGoogle Scholar
  24. 24.
    S. Yaparatne, C.P. Tripp, A. Amirbahman, Photodegradation of taste and odor compounds in water in the presence of immobilized TiO2–SiO2 photocatalysts. J. Hazard. Mater. 346, 208–217 (2018)CrossRefPubMedGoogle Scholar
  25. 25.
    J. Chun-Te Lin, K. Sopajaree, T. Jitjanesuwan, M.-C. Lu, Application of visible light on copper-doped titanium dioxide catalyzing degradation of chlorophenols. Sep. Purif. Technol. 191, 233–243 (2018)CrossRefGoogle Scholar
  26. 26.
    H. Zangeneh, A.A. Zinatizadeh, M. Feyzi, S. Zinadini, D.W. Bahnemann, Application of a novel triple metal-nonmetal doped TiO2 (KBN–TiO2) for photocatalytic degradation of Linear Alkyl Benzene (LAB) industrial wastewater under visible light. Mater. Sci. Semicond. Process. 75, 193–205 (2018)CrossRefGoogle Scholar
  27. 27.
    S. Feizpoor, A. Habibi-Yangjeh, Ternary TiO2/Fe3O4/CoWO4 nanocomposites: novel magnetic visible-light-driven photocatalysts with substantially enhanced activity through pn heterojunction. J. Colloid Interface Sci. 524, 325–336 (2018)CrossRefPubMedGoogle Scholar
  28. 28.
    V. Moradi, M.B.G. Jun, A. Blackburn, R.A. Herring, Significant improvement in visible light photocatalytic activity of Fe doped TiO2 using an acid treatment process. Appl. Surf. Sci. 427, 791–799 (2018)CrossRefGoogle Scholar
  29. 29.
    S. Feizpoor, A. Habibi-Yangjeh, K. Yubuta, S. Vadivel, Fabrication of TiO2/CoMoO4/PANI nanocomposites with enhanced photocatalytic performances for removal of organic and inorganic pollutants under visible light. Mater. Chem. Phys. 224, 10–21 (2019)CrossRefGoogle Scholar
  30. 30.
    S.M. Pourmortazavi, M. Rahimi-Nasrabadi, M. Khalilian-Shalamzari, M.M. Zahedi, S.S. Hajimirsadeghi, I. Omrani, Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles. Appl. Surf. Sci. 263, 745–752 (2012)CrossRefGoogle Scholar
  31. 31.
    P. Chen, H.-Y. He, H2 evolution from H2O/H2O2/MWO4 (M = Fe2+, Co2+, Ni2+) systems by photocatalytic reaction. Res. Chem. Intermed. 40, 1947–1956 (2014)CrossRefGoogle Scholar
  32. 32.
    R. Talebi, Simple sonochemical synthesis and characterization of nickel tungstate nanoparticles and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 27, 3565–3569 (2016)Google Scholar
  33. 33.
    M.R. Mosleh, New simple route for the preparation of nanosized nickel tungstate with the aid of carbohydrates and investigation its photocatalytic application. J. Mater. Sci.: Mater. Electron. 27, 11844–11849 (2016)Google Scholar
  34. 34.
    M.I. Ahmed, A. Adam, A. Khan, M.N. Siddiqui, Z.H. Yamani, M. Qamar, Synthesis of mesoporous NiWO4 nanocrystals for enhanced photoelectrochemical water oxidation. Mater. Lett. 177, 135–138 (2016)CrossRefGoogle Scholar
  35. 35.
    A. Habibi-Yangjeh, M. Shekofteh-Gohari, Novel magnetic Fe3O4/ZnO/NiWO4 nanocomposites: enhanced visible-light photocatalytic performance through pn heterojunctions. Sep. Purif. Technol. 184, 334–346 (2017)CrossRefGoogle Scholar
  36. 36.
    M. Pirhashemi, A. Habibi-Yangjeh, ZnO/NiWO4/Ag2CrO4 nanocomposites with pnn heterojunctions: highly improved activity for degradations of water contaminants under visible light. Sep. Purif. Technol. 193, 69–80 (2018)CrossRefGoogle Scholar
  37. 37.
    J. Kavil, S.G. Ullattil, A. Alshahrie, P. Periyat, Polyaniline as photocatalytic promoter in black anatase TiO2. Sol. Energy 158, 792–796 (2017)CrossRefGoogle Scholar
  38. 38.
    S. Allahveran, A. Mehrizad, Polyaniline/ZnS nanocomposite as a novel photocatalyst for removal of Rhodamine 6G from aqueous media: optimization of influential parameters by response surface methodology and kinetic modeling. J. Mol. Liq. 225, 339–346 (2017)CrossRefGoogle Scholar
  39. 39.
    Z. Wang, X. Peng, C. Huang, X. Chen, W. Dai, X. Fu, CO gas sensitivity and its oxidation over TiO2 modified by PANI under UV irradiation at room temperature. Appl. Catal. B 219, 379–390 (2017)CrossRefGoogle Scholar
  40. 40.
    S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, K. Nakata, Graphitic carbon nitride nanosheets anchored with BiOBr and carbon dots: exceptional visible-light-driven photocatalytic performances for oxidation and reduction reactions. J. Colloid Interface Sci. 530, 642–657 (2018)CrossRefPubMedGoogle Scholar
  41. 41.
    M. Shekofteh-Gohari, A. Habibi-Yangjeh, Facile preparation of Fe3O4@AgBr–ZnO nanocomposites as novel magnetically separable visible-light-driven photocatalysts. Ceram. Int. 41, 1467–1476 (2015)CrossRefGoogle Scholar
  42. 42.
    A. Sikora, K. Tomczuk, Impact of the LED-based light source working regime on the degradation of polymethyl methacrylate. Light. Res. Technol. (2019). CrossRefGoogle Scholar
  43. 43.
    I.D. Smičiklas, S.K. Milonjić, P. Pfendt, S. Raičević, The point of zero charge and sorption of cadmium (II) and strontium (II) ions on synthetic hydroxyapatite. Sep. Purif. Technol. 18, 185–194 (2000)CrossRefGoogle Scholar
  44. 44.
    Y. Zhang, Z.-R. Tang, X. Fu, Y.-J. Xu, TiO2–graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2–graphene truly different from other TiO2–carbon composite materials? ACS Nano 4, 7303–7314 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    S. Feizpoor, A. Habibi-Yangjeh, K. Yubuta, Integration of carbon dots and polyaniline with TiO2 nanoparticles: substantially enhanced photocatalytic activity to removal various pollutants under visible light. J. Photochem. Photobiol., A 367, 94–104 (2018)CrossRefGoogle Scholar
  46. 46.
    N. Parveen, M.O. Ansari, T.H. Han, M.H. Cho, Simple and rapid synthesis of ternary polyaniline/titanium oxide/graphene by simultaneous TiO2 generation and aniline oxidation as hybrid materials for supercapacitor applications. J. Solid State Electrochem. 21, 57–68 (2017)CrossRefGoogle Scholar
  47. 47.
    M.M.J. Sadiq, U.S. Shenoy, D.K. Bhat, NiWO4–ZnO–NRGO ternary nanocomposite as an efficient photocatalyst for degradation of methylene blue and reduction of 4-nitro phenol. J. Phys. Chem. Solids 109, 124–133 (2017)CrossRefGoogle Scholar
  48. 48.
    J. Zhu, W. Li, J. Li, Y. Li, H. Hu, Y. Yang, Photoelectrochemical activity of NiWO4/WO3 heterojunction photoanode under visible light irradiation. Electrochim. Acta 112, 191–198 (2013)CrossRefGoogle Scholar
  49. 49.
    S. Feizpoor, A. Habibi-Yangjeh, Integration of Ag2WO4 and AgBr with TiO2 to fabricate ternary nanocomposites: novel plasmonic photocatalysts with remarkable activity under visible light. Mater. Res. Bull. 99, 93–102 (2018)CrossRefGoogle Scholar
  50. 50.
    H.G. Huang, Z.X. Zheng, J. Luo, H.P. Zhang, L.L. Wu, Z.H. Lin, Internal photoemission in polyaniline revealed by photoelectrochemistry. Synth. Met. 123, 321–325 (2001)CrossRefGoogle Scholar
  51. 51.
    Z. Li, M. Wang, J. Shen, Z. Zhu, Y. Liu, Synthesis of BiOI nanosheets/coarsened TiO2 nanobelts heterostructures for enhancing visible light photocatalytic activity. RSC Adv. 6, 30037–30047 (2016)CrossRefGoogle Scholar
  52. 52.
    X. Zou, Y. Dong, X. Zhang, Y. Cui, X. Ou, X. Qi, The highly enhanced visible light photocatalytic degradation of gaseous o-dichlorobenzene through fabricating like-flowers BiPO4/BiOBr pn heterojunction composites. Appl. Surf. Sci. 391, 525–534 (2017)CrossRefGoogle Scholar
  53. 53.
    S. Li, K. Xu, S. Hu, W. Jiang, J. Zhang, J. Liuc, L. Zhangc, Synthesis of flower-like Ag2O/BiOCOOH pn heterojunction with enhanced visible light photocatalytic activity. Appl. Surf. Sci. 397, 95–103 (2017)CrossRefGoogle Scholar
  54. 54.
    Z.W. Tong, D. Yang, Y.Y. Sun, Z.Y. Jiang, Biomimetic synthesis of C3N4/TiO2/Ag nanosheet composites with high visible-light photocatalytic performance. RSC Adv. 5, 56913–56921 (2015)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversity of Mohaghegh ArdabiliArdabilIran

Personalised recommendations