Advertisement

Journal of the Iranian Chemical Society

, Volume 17, Issue 2, pp 229–245 | Cite as

A comprehensive review on the sacrificial template-accelerated hydrolysis synthesis method for the fabrication of supported nanomaterials

  • T. Tan VuEmail author
  • The Vinh La
  • Ngoc Khiem Tran
  • Dang Chinh Huynh
Review
  • 30 Downloads

Abstract

Supported nanomaterials can be used in a wide range of applications such as microelectronics, energy storage, sensors, sorbents, and catalysts due to their outstanding chemical and physical properties. In this work, we contribute a comprehensive review of a new fabrication method, sacrificial template-accelerated hydrolysis (STAH), for the synthesis of some typically supported nanomaterials. The report can be used to clearly understand the fabrication of nanomaterials using STAH method as well as the mechanism of the method, and the applications of the obtained nanomaterials.

Keywords

Sacrificial template-accelerated hydrolysis ZnO Supported nanomaterials Polar facet Nonpolar facet 

Notes

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 104.03-2018.350.

References

  1. 1.
    Y. Liu, G. Zhou, K. Liu, Y. Cui, Acc. Chem. Res. 50, 2895 (2017)PubMedCrossRefGoogle Scholar
  2. 2.
    C. Chen, Y. Fan, J. Gu, L. Wu, S. Passerini, L. Mai, J. Phys. D Appl. Phys. 51, 113002 (2018)CrossRefGoogle Scholar
  3. 3.
    Q. Zhang, E. Uchaker, S.L. Candelaria, G. Cao, Chem. Soc. Rev. 42, 3127 (2013)PubMedCrossRefGoogle Scholar
  4. 4.
    M. Ahmadi, H. Elmongy, T. Madrakian, M. Abdel-Rehim, Anal. Chim. Acta 958, 1 (2017)PubMedCrossRefGoogle Scholar
  5. 5.
    C. Anichini, W. Czepa, D. Pakulski, A. Aliprandi, A. Ciesielski, P. Samorì, Chem. Soc. Rev. 47, 4860 (2018)PubMedCrossRefGoogle Scholar
  6. 6.
    M. Gamero, Res. Dev. Mater. Sci. 3, 3 (2018)Google Scholar
  7. 7.
    S. Mao, J. Chang, H. Pu, G. Lu, Q. He, H. Zhang, J. Chen, Chem. Soc. Rev. 46, 6872 (2017)PubMedCrossRefGoogle Scholar
  8. 8.
    J. Li, S. To, L. You, Y. Sun, Encycl. Nanotechnol. 27, 2713 (2016)CrossRefGoogle Scholar
  9. 9.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, Science 292, 1897 (2001)PubMedCrossRefGoogle Scholar
  10. 10.
    R.M. Ma, R.F. Oulton, Nat. Nanotechnol. 14, 12 (2019)PubMedCrossRefGoogle Scholar
  11. 11.
    E.J. Lee, T.Y. Kim, S.-W. Kim, S. Jeong, Y. Choi, S.Y. Lee, Energy Environ. Sci. 11, 1425 (2018)CrossRefGoogle Scholar
  12. 12.
    W. Choi, A.C.S. Appl, Mater. Interfaces 8, 31433 (2016)CrossRefGoogle Scholar
  13. 13.
    S.H. Park, Y.S. Ko, S.J. Park, J.S. Lee, J. Cho, K.Y. Baek, T. Kim, K. Woo, J.H. Lee, J. Membr. Sci. 499, 80 (2016)CrossRefGoogle Scholar
  14. 14.
    V.-D. Dao, L. L. Larina, H.-S. Choi, in Counter Electrodes for Dye-sensitized and Perovskite Solar Cells, ed. by S. Yun, A. Hagfeldt (Wiley, 2018), p. 197Google Scholar
  15. 15.
    E. Park, S. Shin, K.-H. Bae, V.-D. Dao, H.-S. Choi, Sol. Energy 153, 126 (2017)CrossRefGoogle Scholar
  16. 16.
    F. Zaera, Chem. Soc. Rev. 42, 2746 (2013)PubMedCrossRefGoogle Scholar
  17. 17.
    M.Y. Ho, P.S. Khiew, D. Isa, T.K. Tan, W.S. Chiu, C.H. Chia, NANO 09, 1430002 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Wang, H. Arandiyan, J. Scott, A. Bagheri, H. Dai, R. Amal, J. Mater. Chem. A 5, 8825 (2017)CrossRefGoogle Scholar
  19. 19.
    J.C. Védrine, Catalysts 7, 341 (2017)CrossRefGoogle Scholar
  20. 20.
    A. Bumajdad, S. Al-Ghareeb, M. Madkour, F.A. Sagheer, Sci. Rep. 7, 14788 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    A.V. Nikam, B.L.V. Prasad, A.A. Kulkarni, CrystEngComm 20, 5091 (2018)CrossRefGoogle Scholar
  22. 22.
    L.M. Rossi, N.J.S. Costa, F.P. Silva, R. Wojcieszak, Green Chem. 16, 2906–2933 (2014)CrossRefGoogle Scholar
  23. 23.
    I. López, T. Valdés-Solís, G. Marbán, ChemCatChem 3, 734 (2011)CrossRefGoogle Scholar
  24. 24.
    T. Vu, L. del Río, T. Valdés-Solís, G. Marbán, Mater. Res. Bull. 47, 1577 (2012)CrossRefGoogle Scholar
  25. 25.
    Z. Cai, B. Liu, X. Zou, H.-M. Cheng, Chem. Rev. 118, 6091 (2018)PubMedCrossRefGoogle Scholar
  26. 26.
    S. Kang, R. Mauchauffé, Y.S. You, S.Y. Moon, Sci. Rep. 8, 16684 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    R.G. Nikov, A.O. Dikovska, N.N. Nedyalkov, G.V. Avdeev, P.A. Atanasov, Beilstein J Nanotechnol. 8, 2438 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    M. Kim, S. Osone, T. Kim, H. Higashi, T. Seto, KONA 34, 80 (2017)CrossRefGoogle Scholar
  29. 29.
    J. Yan, M. Xu, F. Zhang, X. Ruan, J. Yun, Z. Zhang, F. Liao, Mater. Lett. 165, 243 (2016)CrossRefGoogle Scholar
  30. 30.
    M. McCrory, A. Kumar, M.K. Ram, MRS Adv. 1, 1051 (2016)CrossRefGoogle Scholar
  31. 31.
    G.S. Han, S. Lee, J.H. Noh, H.S. Chung, J.H. Park, B.S. Swain, J.H. Im, N.G. Park, H.S. Jung, Nanoscale 6, 6127 (2014)PubMedCrossRefGoogle Scholar
  32. 32.
    K. Ali, S.A. Khan, M.Z.M. Jafri, Nanoscale Res. Lett. 9, 175 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    H. Shi, C.F. Alfaro, K.R. Barrera, T.L. Hessong, S.R. Halbert, Physica Status Solidi (a) 210, 1163 (2013)CrossRefGoogle Scholar
  34. 34.
    M. Abbas, H. Iftikhar, M. Malik, A. Nazir, Coatings 8, 35 (2018)CrossRefGoogle Scholar
  35. 35.
    E. Taboada, I. Angurell, Y.J. Llorca, J. Catal. 309, 460 (2014)CrossRefGoogle Scholar
  36. 36.
    Y. Feng, L. Liu, X. Wang, J. Mater. Chem. 21, 15442 (2011)CrossRefGoogle Scholar
  37. 37.
    T. Vu, L. del Río, T. Valdés-Solís, G. Marbán, Appl. Catal. B 140–141, 189 (2013)CrossRefGoogle Scholar
  38. 38.
    E. Tronconi, G. Groppi, T. Boger, A. Heibel, Chem. Eng. Sci. 59, 4941 (2004)CrossRefGoogle Scholar
  39. 39.
    J. Liu, Y. Li, H. Fan, Z. Zhu, J. Jiang, R. Ding, Y. Hu, X. Huang, Chem. Mater. 22, 212 (2010)CrossRefGoogle Scholar
  40. 40.
    J.H. Lee, I.C. Leu, M.C. Hsu, Y.W. Chung, M.H. Hon, J. Phys. Chem. B 109, 13056 (2005)PubMedCrossRefGoogle Scholar
  41. 41.
    S. Yodyingyong, X. Zhou, Q. Zhang, D. Triampo, J. Xi, K. Park, B. Limketkai, G. Cao, J. Phys. Chem. C 114, 21851 (2010)CrossRefGoogle Scholar
  42. 42.
    J.J. Yuan, H.D. Li, Q.L. Wang, Q. Yu, X.K. Zhang, H.J. Yu, Y.M. Xie, Mater. Lett. 81, 123 (2012)CrossRefGoogle Scholar
  43. 43.
    T. Vu, G. Marbán, Appl. Catal. B 152, 51 (2014)CrossRefGoogle Scholar
  44. 44.
    I. Hölken, G. Neubuser, V. Postica, L. Bumke, O. Lupan, M. Baum, Y.K. Mishra, L. Kienle, R. Adelung, ACS Appl. Mater. Interfaces 8, 20491 (2016)PubMedCrossRefGoogle Scholar
  45. 45.
    J. Wang, J. Tang, B. Ding, Z. Chang, X. Hao, T. Takei, N. Kobayashi, Y. Bando, X. Zhang, Y. Yamauchi, Small 14, 1704461 (2018)CrossRefGoogle Scholar
  46. 46.
    H. Chen, L.-X. Ding, K. Xiao, S. Dai, S. Wang, H. Wang, J. Mater. Chem. A 4, 16318 (2016)CrossRefGoogle Scholar
  47. 47.
    J. Yang, M. Cho, Y. Lee, Biosens. Bioelectron. 75, 15 (2016)PubMedCrossRefGoogle Scholar
  48. 48.
    T. Wang, P. Su, F. Lin, Y. Yang, Y. Yang, Sens. Actuators B Chem. 254, 329 (2018)CrossRefGoogle Scholar
  49. 49.
    Z. Tong, S. Liu, X. Li, L. Mai, J. Zhao, Y. Li, Nanoscale 10, 3254 (2018)PubMedCrossRefGoogle Scholar
  50. 50.
    J.P. Singer, C.I. Pelligra, N. Kornblum, Y. Choo, M. Gopinadhan, P. Bordeenithikasem, J. Ketkaew, S.F. Liew, H. Cao, J. Schroers, C.O. Osuji, Microsyst. Nanoeng. 1, 15040 (2015)CrossRefGoogle Scholar
  51. 51.
    J. Jiang, J. Liu, R. Ding, J. Zhu, Y. Li, Z. Hu, X. Li, X. Huang, A.C.S. Appl, Mater. Interfaces 3, 99 (2011)CrossRefGoogle Scholar
  52. 52.
    D. Hu, P. Diao, D. Xu, M. Xia, Y. Gu, C. Li, S. Yang, Nanoscale 8, 5892 (2016)PubMedCrossRefGoogle Scholar
  53. 53.
    J. Luo, X. Xia, Y. Luo, C. Guan, J. Liu, X. Qi, C.F. Ng, T. Yu, H. Zhang, H.J. Fan, Adv. Energy Mater. 3, 737 (2013)CrossRefGoogle Scholar
  54. 54.
    J. Zhang, J. Guo, H. Xu, B. Cao, ACS Appl. Mater. Interfaces 5, 7893 (2013)PubMedCrossRefGoogle Scholar
  55. 55.
    Q. Zhao, L. Ma, Q. Zhang, C. Wang, Y.X. Xu, J. Nanomater. (2015).  https://doi.org/10.1155/2015/850147 CrossRefGoogle Scholar
  56. 56.
    X. Wu, Y. Zeng, H. Gao, J. Su, J. Liu, Y.Z. Zhu, J. Mater. Chem. A 1, 469 (2013)CrossRefGoogle Scholar
  57. 57.
    Y.V. Kaneti, N.L. Septiani, I. Saptiama, X. Jiang, B. Yuliarto, M. Shiddiky, N. Fukumitsu, Y.M. Kang, D. Golberg, Y. Yamauchi, J. Mater. Chem. A 7, 3415 (2019)CrossRefGoogle Scholar
  58. 58.
    A. Kołodziejczak-Radzimska, T. Jesionowski, Materials (Basel) 7, 2833 (2014)CrossRefGoogle Scholar
  59. 59.
    D. Klimm, Ref. Mod. Mater. Sci. Mater. Eng. 1, 1 (2011).  https://doi.org/10.1016/b978-0-44-453153-7.00095-x CrossRefGoogle Scholar
  60. 60.
    O.F. Farhat, M.M. Halim, M.J. Abdullah, M.K.M. Ali, N.K. Allam, Beilstein J. Nanotechnol. 6, 720 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    A. Mclaren, T. Valdes-Solis, G. Li, S.C. Tsang, J. Am. Chem. Soc. 131, 12540 (2009)PubMedCrossRefGoogle Scholar
  62. 62.
    K.W. Guo, J. Appl. Biotechnol. Bioeng. 2, 1 (2017)Google Scholar
  63. 63.
    W.H. Hirschwald, Acc. Chem. Res. 18, 228 (1985)CrossRefGoogle Scholar
  64. 64.
    M.D.L. Balela, C.M.O. Pelicano, Z. Lockman, J. Mater. Sci. 52, 2319 (2017)CrossRefGoogle Scholar
  65. 65.
    C.M. Pelicano, H. Yanagi, J. Energy Chem. 27, 455 (2018)CrossRefGoogle Scholar
  66. 66.
    C.M. Pelicano, H. Yanagi, Appl. Surf. Sci. 467–468, 932–939 (2019)CrossRefGoogle Scholar
  67. 67.
    E.M. Olegario, C.M.O. Pelicano, L.A. Dahonog, H. Nakajima, Mater. Res. Express 6, 015005 (2018)CrossRefGoogle Scholar
  68. 68.
    C.M. Pelicano, H. Yanagi, J. Mater. Chem. C 5, 8059 (2017)CrossRefGoogle Scholar
  69. 69.
    J. Chang, M.Z. Ahmad, W. Wlodarski, E.R. Waclawik, Sensors (Basel) 13, 8445 (2013)CrossRefGoogle Scholar
  70. 70.
    Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, Appl. Phys. Lett. 84, 3654 (2004)CrossRefGoogle Scholar
  71. 71.
    Y.K. Mishra, R. Adelung, Mater. Today 21, 631 (2018)CrossRefGoogle Scholar
  72. 72.
    T. Vu, T. Valdés-Solís, G. Marbán, Appl. Catal. B 160–161, 57 (2014)CrossRefGoogle Scholar
  73. 73.
    T.T. Vu, T. Valdés-Solís, G. Marbán, J. Environ. Chem. Eng. 2, 2229 (2014)CrossRefGoogle Scholar
  74. 74.
    Y.-C. Liang, N.-C. Xu, RSC Adv. 8, 22437 (2018)CrossRefGoogle Scholar
  75. 75.
    G. Tan, O. Nakagawara, A.N. Hattori, H. Tanaka, AIP Adv. 8, 115029 (2018)CrossRefGoogle Scholar
  76. 76.
    J. Liu, J. Jiang, M. Bosman, H.J. Fan, J. Mater. Chem. 22, 2419 (2012)CrossRefGoogle Scholar
  77. 77.
    M.-S. Wu, H.-W. Chang, J. Phys. Chem. C 117, 2590 (2013)CrossRefGoogle Scholar
  78. 78.
    X. Guo, H. Zhu, Q. Li, Appl. Catal. B 160–161, 408 (2014)CrossRefGoogle Scholar
  79. 79.
    V.T. Tan, L.T. Vinh, T.N. Khiem, H.D. Chinh, Bull. Chem. React. Eng. Catal. 14, 404 (2019)CrossRefGoogle Scholar
  80. 80.
    B. Ding, J. Wang, Z. Chang, G. Xu, X. Hao, L. Shen, H. Dou, X. Zhang, ChemElectroChem 3, 668–674 (2016)CrossRefGoogle Scholar
  81. 81.
    T. Rattanavoravipa, T. Sagawa, S. Yoshikawa, Sol. Energy Mater. Sol. Cells 92, 1445 (2008)CrossRefGoogle Scholar
  82. 82.
    Y.H. Lee, J.H. Heo, S.H. Im, H.J. Kim, C.S. Lim, T.K. Ah, S. Seok, Chem. Phys. Lett. 573, 63 (2013)CrossRefGoogle Scholar
  83. 83.
    J. Yuan, H. Li, Q. Wang, S. Cheng, Chem. Res. Chin. Univ. 30, 18–22 (2014)CrossRefGoogle Scholar
  84. 84.
    U.V. Desai, C. Xu, J. Wu, Y.D. Gao, J. Phys. Chem. C 117, 3232 (2013)CrossRefGoogle Scholar
  85. 85.
    Y.W. Lee, M.A. Lim, S.W. Kang, I. Park, S.W. Han, Chem. Commun. 47, 6299 (2011)CrossRefGoogle Scholar
  86. 86.
    Z. Tong, S. Liu, X. Li, L. Mai, J. Zhao, Y.Y. Li, Nanoscale 10, 3254 (2018)PubMedCrossRefGoogle Scholar
  87. 87.
    M. Ge et al., Adv. Sci. 4, 1600152 (2017)CrossRefGoogle Scholar
  88. 88.
    Z. Tong, S. Liu, X. Li, L. Mai, J. Zhao, Y.Y. Li, Nanoscale 10, 3254 (2018)PubMedCrossRefGoogle Scholar
  89. 89.
    S. Yodyingyong, Q. Zhang, K. Park, C.S. Dandeneau, X. Zhou, D. Triampo, G. Cao, Appl. Phys. Lett. 96, 073115 (2010)CrossRefGoogle Scholar
  90. 90.
    S. Kundu, N. Ravishankar, Nanoscale 8, 1462 (2016)PubMedCrossRefGoogle Scholar
  91. 91.
    W. Zeng, F. Zheng, R. Li, Y. Zhan, Y. Li, J. Liu, Nanoscale 4, 2760 (2012)PubMedCrossRefGoogle Scholar
  92. 92.
    Q.Q. Xiong, X.H. Xia, J.P. Tu, J. Chen, Y.Q. Zhang, D. Zhou, C.D. Gu, X.L. Wang, J. Power Sources 240, 344 (2013)CrossRefGoogle Scholar
  93. 93.
    P. Cousin, R.A. Ross, Mater. Sci. Eng. A 130, 119 (1990)CrossRefGoogle Scholar
  94. 94.
    J.G. Kim, S.H. Lee, Y. Kim, W.B. Kim, ACS Appl. Mater. Interfaces 5, 11321 (2013)PubMedCrossRefGoogle Scholar
  95. 95.
    M.A. Lim et al., ACS Nano 6, 598 (2012)PubMedCrossRefGoogle Scholar
  96. 96.
    B.S. Choi, Y.W. Lee, S.W. Kang, J.W. Hong, J. Kim, I. Park, ACS Nano 6, 5659 (2012)PubMedCrossRefGoogle Scholar
  97. 97.
    C. Zhu, G. Meng, Q. Huang, X. Wang, Y. Qian, X. Hu, H. Tang, N. Wu, Nano Res. 8, 957 (2015)CrossRefGoogle Scholar
  98. 98.
    L. Qin, Q. Zhu, G. Li, F. Liu, Q. Pan, J. Mater. Chem. 22, 7544 (2012)CrossRefGoogle Scholar
  99. 99.
    T. Vu, A.B. Rodil, G. Marbán, T. Valdés-Solís, J. Environ. Chem. Eng. 2, 1612 (2014)CrossRefGoogle Scholar
  100. 100.
    S. Peng, L. Yu, B. Lan, M. Sun, G. Cheng, S. Liao, H. Gao, Y. Deng, Nanotechnology 27, 505404 (2016)PubMedCrossRefGoogle Scholar
  101. 101.
    S. Czioska, J. Wang, X. Teng, S. Zuo, S. Xie, Y.Z. Chen, Nanoscale 10, 2887 (2018)PubMedCrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.School of Chemical EngineeringHanoi University of Science and TechnologyHanoiViet Nam
  2. 2.International Training Institute for Materials Science (ITIMS)Hanoi University of Science and TechnologyHanoiViet Nam

Personalised recommendations