Synthesis of quasi-hexagonal Ag/NiCo2O4 nanosheets and their photocatalytic and antibacterial properties

  • Lu PanEmail author
  • Yuting Zhang
  • Cui-E Shi
Original Paper


The precursors of NiCo2O4 and Ag/NiCo2O4 composite nanosheets with different Ag contents were prepared via a hydrothermal procedure. The final NiCo2O4 and Ag/NiCo2O4 quasi-hexagonal nanosheets with different Ag contents were prepared by calcining each precursor. The as-synthesized samples were characterized by thermogravimetric analysis, X-ray diffraction, scanning electron microscopy and transmission electron microscopy, respectively. The photocatalytic performance of the resultant samples was investigated with assistance of H2O2 under irradiation of visible light by using p-nitrophenol and methyl blue as pollutant target, respectively. The results revealed that the photocatalytic activity of Ag/NiCo2O4 nanosheets increased with increasing Ag content from 0 to 5%, and the Ag/NiCo2O4 composite with 4 and 5% all exhibited higher catalytic activity for degrading p-nitrophenol and methyl blue, respectively. The antibacterial activity of NiCo2O4 and composite Ag/NiCo2O4 nanosheets to several common gram-positive and gram-negative bacteria was examined. The results demonstrated that the Ag/NiCo2O4 composites displayed excellent activity even with a low Ag content, but NiCo2O4 exhibited weak antibacterial activity.


Ag/NiCo2O4 nanosheets Photocatalysis Antibacterial property 



This study was supported by the University Nature Science Research Project of Anhui Province, China (Grant No. KJ2015A208), the Nature Science Fund of Anhui Province, China (Grant No. 1608085MB33) and College’s Innovation Projects of Anhui Province, China (Grant No. 201710381003), respectively.


  1. 1.
    V.B.R. Boppana, H. Schimidt, F. Jiao, D.J. Doren, R.F. Lobo, Chem. Eur. J. 17, 2417 (2011)Google Scholar
  2. 2.
    A. Rahman, R. Jayaganthan, J. Nanostruct. Chem. 51, 47 (2015)Google Scholar
  3. 3.
    P.G. Manikandan, A. Krishnasamy, V. Jaganathan, S. Kumar, A.S. Arul, J. Mol. Struct. 1119, 39 (2016)CrossRefGoogle Scholar
  4. 4.
    Y. Liu, L.J. Cao, C.W. Cao, M. Wang, K.L. Leung, S.S. Zeng, T.F. Hung, C.Y. Chung, Z.G. Lu, Chem. Commun. 50, 14635 (2014)CrossRefGoogle Scholar
  5. 5.
    L. Hu, B. Qu, C. Li, Y. Chen, L. Mei, D. Lei, L. Chen, Q. Li, T. Wang, Mater. Chem. A 1, 5596 (2013)CrossRefGoogle Scholar
  6. 6.
    S. Wang, Y. Hou, X. Wang, ACS Appl. Mater. Interf. 7, 4327 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Sharma, N. Sharma, G.V. Subba, B.V.R. Chowdari, Solid State Ionics 179, 587 (2008)CrossRefGoogle Scholar
  8. 8.
    X. Liu, S. Shi, Q. Xiong, L. Li, Y. Zhang, H. Tang, C. Gu, X. Wang, J. Tu, ACS Appl. Mater. Interf. 5, 8790 (2013)CrossRefGoogle Scholar
  9. 9.
    X. Bo, Y. Zhang, M. Li, A. Nsabimana, L. Guo, J. Power Source 288, 1 (2015)CrossRefGoogle Scholar
  10. 10.
    J.G. Wang, L.N. Jin, X.Y. Qian, M.D. Dong, J. Nanosci. Nanotechno. 16, 8635 (2016)CrossRefGoogle Scholar
  11. 11.
    L. Zhao, L. Wang, P. Yu, C. Tian, H. Feng, Z. Diao, H. Fu, Dalton Trans. 46, 4717 (2017)CrossRefGoogle Scholar
  12. 12.
    B. Sun, J. Zhang, P. Munroe, H. Ahn, G. Wang, Electrochem. Commun. 31, 88 (2013)CrossRefGoogle Scholar
  13. 13.
    D. Chanda, J. Hnát, M. Paida, K. Bouzek, Int. J. Hydrogen Energ. 39, 5713 (2014)CrossRefGoogle Scholar
  14. 14.
    B. Cui, H. Lin, Y.Z. Li, J.B. Li, P. Sun, X.C. Zhao, C.J. Liu, J. Phys. Chem. C 113, 14083 (2009)CrossRefGoogle Scholar
  15. 15.
    Z. Wang, M. Jiang, J. Qin, H. Zhou, Z. Ding, Phys. Chem. Chem. Phys. 17, 16040 (2015)CrossRefGoogle Scholar
  16. 16.
    P. Silwal, L. Miao, I. Stern, X. Zhou, J. Hu, D. Ho Kim, Appl. Phys. Lett. 100, 032102 (2012)CrossRefGoogle Scholar
  17. 17.
    J. Singh, B. Satpati, S. Mohapatra, Plasmonics 12, 877 (2017)CrossRefGoogle Scholar
  18. 18.
    C.H. Kuo, Y.C. Yang, S. Gwo, M.H. Huang, J. Am. Chem. Soc. 133, 1052 (2011)CrossRefGoogle Scholar
  19. 19.
    X. Zou, H. Fan, Y. Tian, M. Zhang, X. Yan, Dalton T. 44, 7811 (2015)CrossRefGoogle Scholar
  20. 20.
    S. Gurunathan, J.W. Han, D.N. Kwon, J.H. Kim, Nanoscale Res. Lett. 9, 1 (2014)CrossRefGoogle Scholar
  21. 21.
    Y. Yang, M. Li, C. Michels, H. Moreirasoares, P.J. Alvarez, Toxicol. Chem. 33, 2234 (2015)CrossRefGoogle Scholar
  22. 22.
    V.V. Tatarchuk, A.P. Sergievskaya, T.M. Korda, I.A. Druzhinina, V.I. Zaikovsky, Chem. Mater. 25, 3570 (2013)CrossRefGoogle Scholar
  23. 23.
    R.K. Kunkalekar, M.S. Prabhu, M.M. Naik, A.V. Salker, Colloid. Surf. B 113, 429 (2014)CrossRefGoogle Scholar
  24. 24.
    A. Amarjargal, L.D. Tijing, I.T. Im, C.S. Kim, Chem. Engi. J. 226, 243 (2013)CrossRefGoogle Scholar
  25. 25.
    X.H. Sun, R.Y. Cao, Y.X. Wu, Y. Liu, X.Y. Zhang, Mater. Process Report. 29, 105 (2014)Google Scholar
  26. 26.
    X. Gao, H. Wang, H. Zhang, X. Chen, L. Wei, B. Xu, Rare Metal Mate. Eng. 42, 2097 (2013)Google Scholar
  27. 27.
    M. Nadafan, R. Malekfar, A. Izadidarbandi, Z. Dehghani, Desalination Water Treat. 57, 1 (2015)Google Scholar
  28. 28.
    L. Wang, W. Zhang, Y. Zhao, L. Cao, J. Phys. Chem. Solid. 120, 154 (2018)CrossRefGoogle Scholar
  29. 29.
    H. Liu, L. Zhong, K.S. Yun, M. Samal, Biotechnol. Bioprocess Eng. 21, 1 (2016)CrossRefGoogle Scholar
  30. 30.
    S.P. Adhikari, H.R. Pant, J.H. Kim, H.J. Kim, C.H. Park, C.S. Kim, Colloid. Surface A 482, 477 (2015)CrossRefGoogle Scholar
  31. 31.
    P. Velmurugan, K. Anbalagan, M. Manosathyadevan, K.J. Lee, M. Cho, S.M. Lee, J.H. Park, S.G. Oh, K.S. Bang, B.T. Oh, Bioproc. Biosyst. Eng. 37, 1935 (2014)CrossRefGoogle Scholar
  32. 32.
    J. Wang, Y. Xiong, X. Zhang, J. Mater. Sci. 52, 3678 (2017)CrossRefGoogle Scholar
  33. 33.
    O.A. Douglas-Gallardo, R. Moiraghi, M.A. Macchione, J.A. Godoy, M.A. Pérez, E.A. Coronado, V.A. Macagno, RSC Adv. 2, 923 (2012)Google Scholar
  34. 34.
    Y. Sun, X.J. Zhang, Adv. Mater. Res. 471, 821–822 (2013)Google Scholar
  35. 35.
    A. Azadbakht, A.R. Abbasi, Fiber Polym. 13, 264 (2012)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.School of Chemistry and Materials EngineeringHuainan Normal UniversityHuainanPeople’s Republic of China
  2. 2.Anhui Key Laboratory of Low Temperature Co-fired MaterialHuainan Normal UniversityHuainanChina
  3. 3.School of Biological EngineeringHuainan Normal UniversityHuainanPeople’s Republic of China

Personalised recommendations