Advertisement

The effect of reaction mixture movement on the performance of chromium-benzenedicarboxylate, MIL-101(Cr), applicable for CO2 adsorption through a new circulating solvothermal synthesis process

  • Fariba Soltanolkottabi
  • M R TalaieEmail author
  • Seyedfoad Aghamiri
  • Shahram Tangestaninejad
Original Paper
  • 6 Downloads

Abstract

The primary objective of the present work was to investigate the effect of fluid movement on synthesized chromium-benzenedicarboxylate, MIL-101(Cr), quality through a set of experiments performed in a circulating tube reactor using an interval schedule, i.e., circulation stopped periodically. The results revealed that using 30 s pump-ON period resulted in cubic crystals while setting this parameter on 90 s created an agglomerated structure. In the optimum condition, the synthesized MIL-101(Cr) had the BET surface area 2354 m2/g, pore volume 1.94 cm3/g, and CO2 adsorption capacity 10.9 mmol/g. Using microwave irradiation to activate the produced crystals improved crystal BET surface area to 3860 m2/g.

Keywords

Fluid movement MIL-101(Cr) Tube reactor Circulation CO2 adsorption Microwave 

Notes

Acknowledgements

The authors gratefully acknowledge the University of Isfahan for financially supporting the present research.

Supplementary material

13738_2019_1746_MOESM1_ESM.tif (4 mb)
Supplementary material 1 (TIFF 4104 kb)

References

  1. 1.
    R.W. Flaig, T.M. Osborn Popp, A.M. Fracaroli, E.A. Kapustin, M.J. Kalmutzki, R.M. Altamimi, F. Fathieh, J.A. Reimer, O.M. Yaghi, J. Am. Chem. Soc. 139, 12125 (2017).  https://doi.org/10.1021/jacs.7b06382 CrossRefGoogle Scholar
  2. 2.
    L. Xia, Q. Liu, J. Solid State Chem. 244, 1 (2016).  https://doi.org/10.1016/j.jssc.2016.09.007 CrossRefGoogle Scholar
  3. 3.
    H. Wei, S. Chai, N. Hu, Z. Yang, L. Wei, L. Wang, Chem. Commun. 51, 12178 (2015).  https://doi.org/10.1039/C5CC04680G CrossRefGoogle Scholar
  4. 4.
    Y. Pramudya, J.L. Mendoza-Cortes, J. Am. Chem. Soc. 138, 15204 (2016).  https://doi.org/10.1021/jacs.6b08803 CrossRefGoogle Scholar
  5. 5.
    H. Ma, H. Ren, S. Meng, Z. Yan, H. Zhao, F. Sun, G. Zhu, Chem. Commun. 49, 9773 (2013).  https://doi.org/10.1039/c3cc45217d CrossRefGoogle Scholar
  6. 6.
    Q. Fang, S. Gu, J. Zheng, Z. Zhuang, S. Qiu, Y. Yan, Angew. Chem. Int. Ed. 53, 2878 (2014).  https://doi.org/10.1002/anie.201310500 CrossRefGoogle Scholar
  7. 7.
    A. Rengaraj, P. Puthiaraj, Y. Haldorai, N.S. Heo, S.K. Hwang, Y.K. Han, S. Kwon, W.S. Ahn, Y.S. Huh, A.C.S. Appl, Mater. Interfaces 8, 8947 (2016).  https://doi.org/10.1021/acsami.6b00284 CrossRefGoogle Scholar
  8. 8.
    C. Liu, W. Zhang, Q. Zeng, S. Lei, Chem. Eur. J. 22, 6768 (2016).  https://doi.org/10.1002/chem.201601199 CrossRefGoogle Scholar
  9. 9.
    G. Lin, H. Ding, D. Yuan, B. Wang, C. Wang, J. Am. Chem. Soc. 138, 3302 (2016).  https://doi.org/10.1021/jacs.6b00652 CrossRefGoogle Scholar
  10. 10.
    P. Wang, M. Kang, S. Sun, Q. Liu, Z. Zhang, S. Fang, Chin. J. Chem. 32, 838 (2014).  https://doi.org/10.1002/cjoc.201400260 CrossRefGoogle Scholar
  11. 11.
    S. Dalapati, S. Jin, J. Gao, Y. Xu, A. Nagai, D. Jiang, J. Am. Chem. Soc. 135, 17310 (2013).  https://doi.org/10.1021/ja4103293 CrossRefGoogle Scholar
  12. 12.
    D. Maspoch, D. Ruiz-Molina, J. Veciana, J. Mater. Chem. 14, 2713 (2004).  https://doi.org/10.1039/B407169G CrossRefGoogle Scholar
  13. 13.
    S.M. Humphrey, T.J.P. Angliss, M. Aransay, D. Cave, L.A. Gerrard, G.F. Weldon, P.T. Wood, Z. Anorg, Allg. Chem. 633, 2342 (2007).  https://doi.org/10.1002/zaac.200700235 CrossRefGoogle Scholar
  14. 14.
    C.R. Mulzer, L. Shen, R.P. Bisbey, J.R. McKone, N. Zhang, H.D. Abruña, W.R. Dichtel, ACS Cent. Sci. 2, 667 (2016).  https://doi.org/10.1021/acscentsci.6b00220 CrossRefGoogle Scholar
  15. 15.
    H. Liao, H. Ding, B. Li, X. Ai, C. Wang, J. Mater. Chem. A 2, 8854 (2014).  https://doi.org/10.1039/C4TA00523F CrossRefGoogle Scholar
  16. 16.
    H. Liao, H. Wang, H. Ding, X. Meng, H. Xu, B. Wang, X. Ai, C. Wang, J. Mater. Chem. A 4, 7416 (2016).  https://doi.org/10.1039/C6TA00483K CrossRefGoogle Scholar
  17. 17.
    G. Férey, F. Millange, O. Morerette, J.M. Grenhe, M.L. Doublet, J.M. Tarascon, Angew. Chem. Int. Ed. 46, 3259 (2007).  https://doi.org/10.1002/anie.200605163 CrossRefGoogle Scholar
  18. 18.
    B.F. Hoskins, R. Robson, J. Am. Chem. Soc. 112, 1546 (1990).  https://doi.org/10.1021/ja00160a038 CrossRefGoogle Scholar
  19. 19.
    N. Tannert, S. Gökpinar, E. Hastürk, S. Nießing, C. Janiak, Dalton Trans. 47, 9850 (2018).  https://doi.org/10.1039/C8DT02029A CrossRefGoogle Scholar
  20. 20.
    P. George, N.R. Dhabarde, P. Chowdhury, Mater. Lett. 186, 151 (2017).  https://doi.org/10.1016/j.matlet.2016.09.099 CrossRefGoogle Scholar
  21. 21.
    C. McKinstry, E.J. Cussen, A.J. Fletcher, V.S. Patwardhan, J. Sefcik, Chem. Eng. J. 326, 570 (2017).  https://doi.org/10.1016/j.cej.2017.05.169 CrossRefGoogle Scholar
  22. 22.
    N. Abdollahi, M.Y. Masoomi, A. Morsali, P.C. Junk, J. Wang, Ultrason. Sonochem. 45, 50 (2018).  https://doi.org/10.1016/j.ultsonch.2018.03.001 CrossRefGoogle Scholar
  23. 23.
    M.R. Armstrong, S. Senthilnathan, C.J. Balzer, B. Shan, L. Chen, B. Mu, Ultrason. Sonochem. 34, 365 (2017).  https://doi.org/10.1016/j.ultsonch.2016.06.011 CrossRefGoogle Scholar
  24. 24.
    M. Tanhaei, A.R. Mahjoub, V. Safarifard, Ultrason. Sonochem. 41, 189 (2018).  https://doi.org/10.1016/j.ultsonch.2017.09.030 CrossRefGoogle Scholar
  25. 25.
    W. Xuan, R. Ramachandran, C. Zhao, F. Wang, J. Solid State Electrochem. 22, 3873 (2018).  https://doi.org/10.1007/s10008-018-4096-7 CrossRefGoogle Scholar
  26. 26.
    S. Zhang, D. Li, S. Chen, X. Yang, X. Zhao, Q. Zhao, S. Komarneni, D. Yang, J. Mater. Chem. A 5, 12453 (2017).  https://doi.org/10.1039/C7TA03070C CrossRefGoogle Scholar
  27. 27.
    C. Yu, Y. Wang, J. Cui, D. Yu, X. Zhang, X. Shu, J. Zhang, Y. Zhang, R. Vajtai, P.M. Ajayan, Y. Wu, J. Mater. Chem. A 6, 8396 (2018).  https://doi.org/10.1039/C8TA01426D CrossRefGoogle Scholar
  28. 28.
    S. Mandegarzad, J.B. Raoof, S.R. Hosseini, R. Ojani, Appl. Surf. Sci. 436, 451 (2018).  https://doi.org/10.1016/j.apsusc.2017.12.034 CrossRefGoogle Scholar
  29. 29.
    K. Užarević, N. Ferdelji, T. Mrla, P.A. Julien, B. Halasz, T. Friščić, I. Halasz, Chem. Sci. 9, 2525 (2018).  https://doi.org/10.1039/C7SC05312F CrossRefGoogle Scholar
  30. 30.
    Y. Chen, H. Wu, Z. Liu, X. Sun, Q. Xia, Z. Li, Ind. Eng. Chem. Res. 57, 703 (2018).  https://doi.org/10.1021/acs.iecr.7b03712 CrossRefGoogle Scholar
  31. 31.
    D. Lv, Y. Chen, Y. Li, R. Shi, H. Wu, X. Sun, J. Xiao, H. Xi, O. Xia, Z. Li, J. Chem. Eng. Data 62, 2030 (2017).  https://doi.org/10.1021/acs.jced.7b00049 CrossRefGoogle Scholar
  32. 32.
    T.P. Vaid, S.P. Kelley, R.D. Rogers, IUCr. J. 4, 380 (2017).  https://doi.org/10.1107/S2052252517008326 CrossRefGoogle Scholar
  33. 33.
    E. Sert, E. Yilmaz, F.S. Atalay, Anadolu Univ. Sci. Technol. A. Appl. Sci. Eng. 18, 1107 (2017).  https://doi.org/10.18038/aubtda.328791 Google Scholar
  34. 34.
    Q.Q. Xu, B. Liu, L. Xu, H. Jiao, J. Solid State Chem. 247, 1 (2017).  https://doi.org/10.1016/j.jssc.2016.12.006 CrossRefGoogle Scholar
  35. 35.
    K. Wang, T. Li, H. Zeng, G. Zou, Q. Zhang, Z. Lin, Inorg. Chem. 57, 8726 (2018).  https://doi.org/10.1021/acs.inorgchem.8b01509 CrossRefGoogle Scholar
  36. 36.
    P. Tan, X.Y. Xie, X.Q. Liu, T. Pan, C. Gu, P.F. Chen, J.Y. Zhou, Y. Pan, L.B. Sun, J. Hazard. Mater. 321, 344 (2017).  https://doi.org/10.1016/j.jhazmat.2016.09.026 CrossRefGoogle Scholar
  37. 37.
    K. Miyake, Y. Hirota, K. Ono, Y. Uchida, M. Miyamoto, N. Nishiyama, New J. Chem. 41, 2235 (2017).  https://doi.org/10.1039/C6NJ03538H CrossRefGoogle Scholar
  38. 38.
    N. Lu, F. Zhou, H. Jia, H. Wang, B. Fan, R. Li, Ind. Eng. Chem. Res. 56, 14155 (2017).  https://doi.org/10.1021/acs.iecr.7b04010 CrossRefGoogle Scholar
  39. 39.
    F. Cacho-Bailo, C. Téllez, J. Coronas, Microfluidics: Fundamental, Devices and Applications: Fundamentals and Applications, 1st edn. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2018), pp. 479–515.  https://doi.org/10.1002/9783527800643.ch16 CrossRefGoogle Scholar
  40. 40.
    J. Cui, N. Gao, X. Yin, W. Zhang, Y. Liang, L. Tian, K. Zhou, S. Wang, G. Li, Nanoscale 10, 9192 (2018).  https://doi.org/10.1039/C8NR01219A CrossRefGoogle Scholar
  41. 41.
    C. Echaide-Górriz, C. Clément, F. Cacho-Bailo, C. Téllez, J. Coronas, J. Mater. Chem. A 6, 5485 (2018).  https://doi.org/10.1039/C8TA01232F CrossRefGoogle Scholar
  42. 42.
    F.G. Cirujano, E. López-Maya, J.A.R. Navarro, D.E. De Vos, Top. Catal. 61, 1414 (2018).  https://doi.org/10.1007/s11244-018-1039-6 CrossRefGoogle Scholar
  43. 43.
    S. Bennabi, M. Belbachir, J. Mater. Environ. Sci 8, 4391 (2017)Google Scholar
  44. 44.
    C. Wang, Q. Cheng, Y. Wang, Inorg. Chem. 57, 3753 (2018).  https://doi.org/10.1021/acs.inorgchem.7b03030 CrossRefGoogle Scholar
  45. 45.
    F. Rezaei, S. Lawson, H. Hosseini, H. Thakkar, A. Hajari, S. Monjezi, A.A. Rownaghi, Chem. Eng. J. 313, 1346 (2017).  https://doi.org/10.1016/j.cej.2016.11.058 CrossRefGoogle Scholar
  46. 46.
    S. Zhou, Y. Wei, L. Zhuang, L.X. Ding, H. Wang, J. Mater. Chem. A 5, 1948 (2017).  https://doi.org/10.1039/C6TA09469D CrossRefGoogle Scholar
  47. 47.
    M. Wilson, S.N. Barrientos-Palomo, P.C. Stevens, N.L. Mitchell, G. Oswald, C.M. Nagaraja, J.P.S. Badyal, ACS Appl. Mater. Interfaces 10, 4057 (2018).  https://doi.org/10.1021/acsami.7b16029 CrossRefGoogle Scholar
  48. 48.
    N. Stock, S. Biswas, Chem. Rev. 112, 933 (2012).  https://doi.org/10.1021/cr200304e CrossRefGoogle Scholar
  49. 49.
    J. Li, S. Cheng, Q. Zhao, P. Long, J. Dong, Int. J. Hydrog. Energy 34, 1377 (2009).  https://doi.org/10.1016/j.ijhydene.2008.11.048 CrossRefGoogle Scholar
  50. 50.
    M. Mulligan, J. Rothstein, Microfluid. Nanofluid. 13, 65 (2012).  https://doi.org/10.1007/s10404-012-0941-7 CrossRefGoogle Scholar
  51. 51.
    G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, Science 309, 2040 (2005).  https://doi.org/10.1126/science.1116275 CrossRefGoogle Scholar
  52. 52.
    G. Férey, J. Solid State Chem. 152, 37 (2000).  https://doi.org/10.1006/jssc.2000.8667 CrossRefGoogle Scholar
  53. 53.
    C. Serre, F. Millange, S. Surblé, G. Férey, Angew. Chem. Int. Ed. 43, 6285 (2004).  https://doi.org/10.1002/anie.200454250 CrossRefGoogle Scholar
  54. 54.
    G. Férey, C. Serre, C. Mellot-Draznieks, F. Millange, S. Surble, J. Dutour, I. Margiolaki, Angew. Chem. Int. Ed. 43, 6296 (2004).  https://doi.org/10.1002/anie.200460592 CrossRefGoogle Scholar
  55. 55.
    J. Yang, Q. Zhao, J. Li, J. Dong, Microporous Mesoporous Mater. 130, 174 (2010).  https://doi.org/10.1016/j.micromeso.2009.11.001 CrossRefGoogle Scholar
  56. 56.
    C.Y. Huang, M. Song, Z.Y. Gu, H.F. Wang, X.P. Yan, Environ. Sci. Technol. 45, 4490 (2011).  https://doi.org/10.1021/es200256q CrossRefGoogle Scholar
  57. 57.
    L. Bromberg, Y. Diao, H. Wu, S.A. Speakman, T.A. Hatton, Chem. Mater. 24, 1664 (2012).  https://doi.org/10.1021/cm2034382 CrossRefGoogle Scholar
  58. 58.
    D. Jiang, A.D. Burrows, K.J. Edler, CrystEngComm 13, 6916 (2011).  https://doi.org/10.1039/C1CE06274C CrossRefGoogle Scholar
  59. 59.
    X.X. Huang, L.G. Qiu, W. Zhang, Y.P. Yuan, X. Jiang, A.J. Xie, Y.H. Shen, J.F. Zhu, CrystEngComm 14, 1613 (2012).  https://doi.org/10.1039/C1CE06138K CrossRefGoogle Scholar
  60. 60.
    L.T. Yang, L.G. Qiu, S.M. Hu, X. Jiang, A.J. Xie, Y.H. Shen, Inorg. Chem. Commun. 35, 265 (2013).  https://doi.org/10.1016/j.inoche.2013.06.034 CrossRefGoogle Scholar
  61. 61.
    H. Chen, S. Chen, X. Yuan, Y. Zhang, Mater. Lett. 100, 230 (2013).  https://doi.org/10.1016/j.matlet.2013.03.053 CrossRefGoogle Scholar
  62. 62.
    D. Jiang, A.D. Burrows, R. Jaber, K.J. Edler, Chem. Commun. 48, 4965 (2012).  https://doi.org/10.1039/C2CC31079A CrossRefGoogle Scholar
  63. 63.
    D. Jiang, A.D. Burrows, Y. Xiong, K.J. Edler, J. Mater. Chem. A 1, 5497 (2013).  https://doi.org/10.1039/C3TA10766C CrossRefGoogle Scholar
  64. 64.
    T. Zhao, F. Jeremias, I. Boldog, B. Nguyen, S.K. Henninger, C. Janiak, Dalton Trans. 44, 16791 (2015).  https://doi.org/10.1039/C5DT02625C CrossRefGoogle Scholar
  65. 65.
    N.A. Khan, I.J. Kang, H.Y. Seok, S.H. Jhung, Chem. Eng. J. 166, 1152 (2011).  https://doi.org/10.1016/j.cej.2010.11.098 CrossRefGoogle Scholar
  66. 66.
    J.J. Zhou, K.Y. Liu, C.L. Kong, L. Chen, Bull. Korean Chem. Soc. 34, 1625 (2013).  https://doi.org/10.5012/bkcs.2013.34.6.1625 CrossRefGoogle Scholar
  67. 67.
    D.Y. Hong, Y.K. Hwang, C. Serre, G. Ferey, J.S. Chang, Adv. Funct. Mater. 19, 1537 (2009).  https://doi.org/10.1002/adfm.200801130 CrossRefGoogle Scholar
  68. 68.
    P. Chowdhury, C. Bikkina, S. Gumma, J. Phys. Chem. C 113, 6616 (2009).  https://doi.org/10.1021/jp811418r CrossRefGoogle Scholar
  69. 69.
    P. Chowdhury, S. Mekala, F. Dreisbach, S. Gumma, Microporous Mesoporous Mater. 152, 246 (2012).  https://doi.org/10.1016/j.micromeso.2011.11.022 CrossRefGoogle Scholar
  70. 70.
    M. Anbia, V. Hoseini, J. Nat. Gas. Chem. 21, 339 (2012).  https://doi.org/10.1016/s1003-9953(11)60374-5 CrossRefGoogle Scholar
  71. 71.
    Z.H. Zhang, S. Huang, S.H. Xian, H. Xi, Z.H. Li, Energy Fuels 25, 835 (2011).  https://doi.org/10.1021/ef101548g CrossRefGoogle Scholar
  72. 72.
    M. Montazerolghaem, S.F. Aghamiri, S. Tangestaninejad, M.R. Talaie, RSC Adv. 6, 632 (2016).  https://doi.org/10.1039/C5RA22450K CrossRefGoogle Scholar
  73. 73.
    F. Soltanolkottabi, M.R. Talaie, S.F. Aghamiri, S. Tangestaninejad, Adv. Mater. Let. 10, 604 (2019).  https://doi.org/10.5185/amlett.2019.2280 Google Scholar
  74. 74.
    E. Haque, N.A. Khan, J.E. Lee, S.H. Jhung, Chem. Eur. J. 15, 11730 (2009).  https://doi.org/10.1002/chem.200902036 CrossRefGoogle Scholar
  75. 75.
    R.W. Cahn, P. Haasen, E.J. Kramer, Materials Science and Technology, 1st edn. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006), pp. 232–233CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Chemical Engineering Department, Faculty of EngineeringUniversity of IsfahanIsfahanIran
  2. 2.Chemical Engineering DepartmentShiraz UniversityShirazIran
  3. 3.Faculty of ChemistryUniversity of IsfahanIsfahanIran

Personalised recommendations