Eco-friendly synthesis of 3-aminoimidazo [1, 2-a] pyridines via a one-pot three-component reaction in PEG catalyzed by peptide nanofibers: as hydrogen-bonding organocatalyst

  • Arash Ghorbani-ChoghamaraniEmail author
  • Zahra Taherinia
Original Paper


Self-assembled peptide nanofibers have attracted extensive attention; they offer unique templating possibilities, which allow the synthesis of nanostructured materials with high surface areas, and also act as organocatalysts for various transformations in organic chemistry. In the present work, peptide nanofibers as hydrogen-bonding organocatalysts have been developed as efficient organocatalysts for three-component Groebke condensation reactions of aldehydes, isocyanides, and 2-aminopyridines in PEG to afford the corresponding 3-aminoimidazo [1, 2-a] pyridines in high yields without any additives. The key advantages of catalytic systems are (1) using peptide nanofibers as powerful hydrogen-bonding organocatalysts for the synthesis of 3-aminoimidazo [1, 2-a] pyridines, (2) having high catalytic activity, and (3) performing the reactions which can be carried out in PEG, as green solvent instead of the usually used organic solvents. This catalyst could be recycled and reused at least for four times without noteworthy loss of its activity.

Graphic abstract


Peptide nanofiber 3-Aminoimidazo [1, 2-a] pyridines PEG 



Authors thank the research facilities of Ilam University, Ilam, Iran, for financial support of this research project.


  1. 1.
    P. Liu, L.S. Fang, X.S. Lei, G.Q. Lin, Tetrahedron Lett. 51, 4505–4608 (2010)CrossRefGoogle Scholar
  2. 2.
    G. Song, Y. Zhang, X. Li, Organometallics 27, 1936–1943 (2008)CrossRefGoogle Scholar
  3. 3.
    A. Hu, G.T. Yee, W. Lin, J. Am. Chem. Soc. 127, 12486–12487 (2005)CrossRefGoogle Scholar
  4. 4.
    A. Gueiffier, S. Mavel, M. Lhassani, A. Elhakmaoui, R. Snoeck, G. Andrei, O. Chavignon, J.C. Teulade, M. Witvrouw, J. Balzarini, E.D. Clercq, J.P. Chapat, J. Med. Chem. 41, 5108–5112 (1998)CrossRefGoogle Scholar
  5. 5.
    N. Chernyak, V. Gevorgyan, Angew. Chem. Int. Ed. 49, 2743–2746 (2010)CrossRefGoogle Scholar
  6. 6.
    E.F. DiMauro, J.M. Kennedy, J. Org. Chem. 72, 1013–1016 (2007)CrossRefGoogle Scholar
  7. 7.
    G.B. Blackburn, P. Fleming, K. Shiosaki, S. Tsai, Tetrahedron Lett. 39, 3635–3638 (1998)CrossRefGoogle Scholar
  8. 8.
    A. Shaabani, E. Soleimani, A. Sarvary, A.H. Rezayan, A. Maleki, Chin. J. Chem. 27, 369–371 (2009)CrossRefGoogle Scholar
  9. 9.
    A. Shaabani, E. Soleimani, A. Maleki, Monatshefte Chem. 138, 73–76 (2007)CrossRefGoogle Scholar
  10. 10.
    A. Shaabani, E. Soleimani, A. Maleki, Synth. Commun. 38, 1090–1095 (2008)CrossRefGoogle Scholar
  11. 11.
    A. Shaabani, E. Soleimani, A. Maleki, Tetrahedron Lett. 47, 3031–3034 (2006)CrossRefGoogle Scholar
  12. 12.
    C. Blackburn, B. Guan, Tetrahedron Lett. 41, 1495–1500 (2000)CrossRefGoogle Scholar
  13. 13.
    M.A. Zolfigol, N. Bahrami-Nejad, F. Afsharnadery, S. Bagheri, J. Mol. Liq. 221, 851–859 (2016)CrossRefGoogle Scholar
  14. 14.
    M.A. Zolfigol, M. Navazeni, M. Yari, R. Ayazi-Nasrabadi, RSC Adv. 6, 92862–92868 (2016)CrossRefGoogle Scholar
  15. 15.
    K. Amiri, A. Rostami, S. Samadi, A. Rostami, Catal. Commun. 86, 108–112 (2016)CrossRefGoogle Scholar
  16. 16.
    A. Sengupta, C.L. Su, C.L. Bao, C.T. Nai, K.P. Loh, ChemCatChem 6, 2507–2511 (2014)CrossRefGoogle Scholar
  17. 17.
    A. Ghorbani-Choghamarani, Z. Taherinia, RSC Adv. 6, 59410–59421 (2016)CrossRefGoogle Scholar
  18. 18.
    A. Ghorbani-Choghamarani, L. Shiri, G. Azadi, RSC Adv. 6, 32653–32660 (2016)CrossRefGoogle Scholar
  19. 19.
    D. Astruc, F. Lu, J.R. Aranzaes, Angew. Chem. Int. Ed. 44, 7852–7872 (2005)CrossRefGoogle Scholar
  20. 20.
    M. Hajjami, A. Ghorbani-Choghamarani, R. Ghafouri-Nejad, B. Tahmasbi, New J. Chem. 40, 3066–3074 (2015)CrossRefGoogle Scholar
  21. 21.
    S. Rayati, S. Shokoohi, E. Bohloulbandi, J. Iran. Chem. Soc. 13, 1983–1991 (2016)CrossRefGoogle Scholar
  22. 22.
    J. Kofoed, J.L. Reymond, Curr. Opin. Chem. Biol. 9, 656–664 (2005)CrossRefGoogle Scholar
  23. 23.
    M. Nikoorazm, A. Ghorbani-Choghamarani, M. Khanmoradi, RSC Adv. 6, 56549–56561 (2016)CrossRefGoogle Scholar
  24. 24.
    I. Maity, D.B. Rasale, A.K. Das, RSC Adv. 4, 2984–2988 (2014)CrossRefGoogle Scholar
  25. 25.
    L. Shao, W. Ji, P. Dong, M. Zeng, C. Qi, X.M. Zhang, J. Appl. Catal. 267, 413–417 (2012)Google Scholar
  26. 26.
    R. Sahay, J. Sundaramurthy, P.S. Kumar, V. Thavasi, S.G. Mhaisalkar, S. Ramakrishna, Solid State Chem. 186, 261–267 (2012)CrossRefGoogle Scholar
  27. 27.
    R.S. Varma, D. Kumar, Tetrahedron Lett. 40, 7665–7669 (1999)CrossRefGoogle Scholar
  28. 28.
    M. Adib, E. Sheikhi, N. Rezaei, Tetrahedron Lett. 52, 3191–3194 (2011)CrossRefGoogle Scholar
  29. 29.
    A. Shaabani, E. Soleimani, A. Maleki, J. Moghimi-Rad, Synth. Commun. 38, 1090–1095 (2008)CrossRefGoogle Scholar
  30. 30.
    A. Habibi, Z. Tarameshloo, S. Rostamizadeh, A. M. Amani, Lett. Org. 9, 155–159 (2012)CrossRefGoogle Scholar
  31. 31.
    S. Sadjadi, M. Eskandari, Monatshefte Chem. 143, 653–656 (2012)CrossRefGoogle Scholar
  32. 32.
    M.L. Bode, D. Gravestock, S. Moleele, S.C.W. van der Westhuyzen, S.C. Pelly, P.A. Steenkamp, L.A. Nkabinde, Bioorg. Med. Chem. 19, 4227–4237 (2011)CrossRefGoogle Scholar
  33. 33.
    A. Habibi, Z. Tarameshloo, S. Rostamizadeh, A.M. Amani, Lett. Org. Chem. 9, 155–159 (2012)CrossRefGoogle Scholar
  34. 34.
    S. Rostamnia, A. Hassankhani, RSC Adv. 3, 1826–18629 (2013)CrossRefGoogle Scholar
  35. 35.
    S. Vidyacharan, A.H. Shinde, B. Satpathi, D.S. Sharada, Green Chem. 16, 1168–1175 (2014)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Ilam UniversityIlamIran

Personalised recommendations