Advertisement

Synthesis, X-ray structural analysis, antibacterial and DNA-binding studies of a lanthanum bis-(5,5′-dimethyl-2,2′-bipyridine) complex

  • T. Kondori
  • N. Akbarzadeh-TEmail author
  • C. Graiff
Original Paper
  • 7 Downloads

Abstract

A new complex with the formula [La(5,5′-dmbpy)2(NO3)3] (a) [where (5,5′-dmbpy = 5,5′-dimethyl-2,2′-bipyridine)] has been synthesized. The compound was characterized by cyclic voltammetry, elemental analysis and spectroscopic methods (IR, UV–Vis, 1H-NMR). Single crystals adapted for X-ray diffraction analysis were recorded by slow crystallization from a methanol solution. The complex is neutral being the lanthanum cation chelated by two bipyridine derivative neutral ligands and three bidentate nitrate groups. Electronic spectra show the transition of both ligand field and charge transfer bands. The fluorescence properties of the compound have been studied. The interactions of complex with FS-DNA (salmon sperm DNA) have been studied using UV–Vis, fluorescence spectroscopies and gel electrophoresis. The above-mentioned techniques were used in physiological buffer having pH 7.2. The binding constant (Kb) for interaction in (a) with DNA was obtained using UV–Vis spectroscopies (Kb= 1.2 × 105) and fluorescence spectroscopies (Kb= 1.50 × 105). The binding constant (Kb), the number of binding sites for each 1000 nucleotides (n) and the apparent bio molecular quenching constant (kq) for FS-DNA were obtained through Stern–Volmer equation. Thermodynamic parameters data (∆H°, ΔS° and ΔG°) showed that hydrogen bonding and van der Waals interactions have an important function in the interaction of DNA–La(III) complex, and the binding mode is the groove binding. The DNA binding of La(III) complex is spontaneous as suggested by the negative ΔG°. Moreover, the DNA cleavage has been studied using agarose gel electrophoresis. The antibacterial effects of complex (a) have also been examined in vitro against standard bacterial strains.

Keywords

Single crystals Fluorescence FS-DNA Stern–Volmer equation Gel electrophoresis Antibacterial 

Notes

Acknowledgements

The authors sincerely thank the University of Sistan and Baluchestan for financial support of this work.

References

  1. 1.
    A. Zelewsky, Inorganic Chemistry, Stereochemistry of Coordination Compounds (Wiley, New York, 1996)Google Scholar
  2. 2.
    N. Alfi, M. Khorasani-Motlagh, A.R. Rezvani, M. Noroozifar, K. Molčanov, J. Mol. Struct. 1137, 771 (2017)Google Scholar
  3. 3.
    N.R. Kelly, S. Goetz, C.S. Hawes, P.E. Kruger, Inorg. Chim. Acta 403, 102 (2013)Google Scholar
  4. 4.
    V. Amani, N. Safari, B. Notash, J. Iran. Chem. Soc. 10(4), 751 (2013)Google Scholar
  5. 5.
    N.T. Pour, A. Khalighi, M. Yousefi, V. Amani, Synth. React. Inorg. Met. Nano-Met. Chem. 45(9), 1427 (2015)Google Scholar
  6. 6.
    A. Wojciechowska, Z. Staszak, W. Bronowska, A. Pietraszko, M. Cieślak-Golonka, Inorg. Chem. 40(8), 1871 (2001)Google Scholar
  7. 7.
    A. Wojciechowska, Z. Staszak, W. Bronowska, A. Pietraszko, M. Cieślak-Golonka, J. Mol. Struct. 654(1), 197 (2003)Google Scholar
  8. 8.
    A.G. Zavozin, N.I. Simirskaya, Y.V. Nelyubina, S.G. Zlotin, Tetrahedron 72(47), 7552 (2016)Google Scholar
  9. 9.
    F. Havas, N. Leygue, M. Danel, B. Mestre, C. Galaup, C. Picard, Tetrahedron 65(36), 7673 (2009)Google Scholar
  10. 10.
    W.S. Liu, T.Q. Jiao, Y.Z. Li, Q.Z. Liu, M.Y. Tan, H. Wang, L. Wang, J. Am. Chem. Soc. 126(8), 2280 (2004)Google Scholar
  11. 11.
    G. Mancino, A.J. Ferguson, A. Beeby, N.J. Long, T.S. Jones, J. Am. Chem. Soc. 127(2), 524 (2005)Google Scholar
  12. 12.
    L. Pan, K.M. Adams, H.E. Hernandez, X. Wang, C. Zheng, Y. Hattori, K. Kaneko, J. Am. Chem. Soc. 125(10), 3062 (2003)Google Scholar
  13. 13.
    A.Y. Robin, K.M. Fromm, Coord. Chem. Rev. 250(15–16), 2127 (2006)Google Scholar
  14. 14.
    S. Khanjani, A. Morsali, J. Mol. Liq. 153(2), 129 (2010)Google Scholar
  15. 15.
    G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Nano Lett. 13, 3026 (2011)Google Scholar
  16. 16.
    N. Erlitzki, K. Huang, S. Xhani, A. Farahat, J. Biol. Chem. 231, 95 (2017)Google Scholar
  17. 17.
    G.M. Sheldrick, SADABS (Bruker AXS, Madison, 1998)Google Scholar
  18. 18.
    G.M. Sheldrick, Acta Crystallogr. Sect. A 64, 11 (2015)Google Scholar
  19. 19.
    A.R. Al-Karaghouli, J.S. Wood, Inorg. Chem. 11(10), 2293 (1972)Google Scholar
  20. 20.
    V. Amani, N. Safari, H.R. Khavasi, Polyhedron 26(15), 4257 (2007)Google Scholar
  21. 21.
    V. Amani, N. Safari, H.R. Khavasi, P. Mirzaei, Polyhedron 26(17), 4908 (2007)Google Scholar
  22. 22.
    M.S. Gaafar, I. Shaarany, T. Alharbi, J. Alloys Compd. 616, 625 (2014)Google Scholar
  23. 23.
    C.-T. Cao, Y. Bi, C. Cao, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 163, 96 (2016)Google Scholar
  24. 24.
    V. Amani, R. Alizadeh, H.S. Alavije, S.F. Heydari, M. Abafat, J. Mol. Struct. 1142, 92 (2017)Google Scholar
  25. 25.
    R. Alizadeh, V. Amani, Struct. Chem. 22(5), 1153 (2011)Google Scholar
  26. 26.
    Z.-M. Sun, J.-G. Mao, Y.-Q. Sun, H.-Y. Zeng, A. Clearfield, Inorg. Chem. 43(1), 336 (2004)Google Scholar
  27. 27.
    G.A. Pitsevich, A.E. Malevich, E.N. Lovskaya, I.Y. Doroshenko, V. Sablinskas, V.E. Pogorelov, I.D. Dovga, V. Balevicius, Vib. Spectrosc. 79, 67 (2015)Google Scholar
  28. 28.
    M. Alibrahim, H. Shlewit, Period. Polytech. Chem. Eng. 51(2), 57 (2007)Google Scholar
  29. 29.
    M. Merroun, C. Henning, A. Rossberg, T. Reich, R. Nicolai, K.H. Heise, S. Selenska-Pobell, Uranium in the Aquatic Environment (Springer, Berlin, 2002), p. 505Google Scholar
  30. 30.
    S.N. Ostad, S.M. Emadi, S. Tavajohi, V. Amani, A. Abedi, Bull. Korean Chem. Soc. 33, 3891 (2012)Google Scholar
  31. 31.
    F. Shahbazi-Raz, V. Amani, E. Bahojb-Noruzi, N. Safari, Inorg. Chim. Acta 435, 262 (2015)Google Scholar
  32. 32.
    L. Rintoul, A.S. Micallef, S.E. Bottle, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 70(4), 713 (2008)Google Scholar
  33. 33.
    S.N. Ostad, A. Abedi, V. Amani, P. Karimi, S. Heydarnezhad, J. Iran. Chem. Soc. 13(8), 1417 (2016)Google Scholar
  34. 34.
    H.H. Repich, S.I. Orysyk, V.V. Orysyk, Y.L. Zborovskii, V.I. Pekhnyo, M.V. Vovk, J. Mol. Struct. 1144, 225 (2017)Google Scholar
  35. 35.
    A.R. Rezvani, H. Hadadzadeh, B. Patrick, Inorg. Chim. Acta 336, 125 (2002)Google Scholar
  36. 36.
    M. Shahid, P.K. Sharma, Z.A. Siddiqi, F. Sama, I.A. Ansari, M. Khalid, J. Mol. Struct. 1063, 313 (2014)Google Scholar
  37. 37.
    H. Saravani, M. Khajehali, Orient. J. Chem. 31(4), 2351 (2015)Google Scholar
  38. 38.
    K.M. Raj, B.H.M. Mruthyunjayaswamy, J. Mol. Struct. 1074, 572 (2014)Google Scholar
  39. 39.
    R. Alizadeh, V. Amani, Inorg. Chim. Acta 443, 151 (2016)Google Scholar
  40. 40.
    A. Abedi, E. Saemian, V. Amani, J. Struct. Chem. 56(8), 1545 (2015)Google Scholar
  41. 41.
    G. Hennrich, H. Sonnenschein, U. Resch-Genger, J. Am. Chem. Soc. 121(21), 5073 (1999)Google Scholar
  42. 42.
    Z. Kowser, U. Rayhan, S. Rahman, P.E. Georghiou, T. Yamato, Tetrahedron 73(36), 5418 (2017)Google Scholar
  43. 43.
    N. Chattopadhyay, A. Mallick, S. Sengupta, J. Photochem. Photobiol. A Chem. 177(1), 55 (2006)Google Scholar
  44. 44.
    K. Karami, Z.M. Lighvan, S.A. Barzani, A.Y. Faal, M. Poshteh-Shirani, T. Khayamian, M. Dušek, New J. Chem. 39(11), 8708 (2015)Google Scholar
  45. 45.
    M.S. Deshpande, A.A. Kumbhar, A.S. Kumbhar, M. Kumbhakar, H. Pal, U.B. Sonawane, R.R. Joshi, Bioconjug. Chem. 20(3), 447 (2009)Google Scholar
  46. 46.
    K. Abdi, H. Hadadzadeh, M. Salimi, J. Simpson, A.D. Khalaji, Polyhedron 44(1), 101 (2012)Google Scholar
  47. 47.
    W.A. Wentz, A.S. Danell, Int. J. Mass Spectrom. 421, 124 (2017)Google Scholar
  48. 48.
    U. Chaveerach, A. Meenongwa, Y. Trongpanich, C. Soikum, P. Chaveerach, Polyhedron 29(2), 731 (2010)Google Scholar
  49. 49.
    Y. Zhang, M. Wang, Q. Xie, X. Wen, S. Yao, Sensors Actuators B Chem. 105(2), 454 (2005)Google Scholar
  50. 50.
    L.K. Fraiji, D.M. Hayes, T.C. Werner, J. Chem. Educ. 69(5), 424 (1992)Google Scholar
  51. 51.
    F.-Y. Wu, Y.-L. Xiang, Y.-M. Wu, F.-Y. Xie, J. Lumin. 129(11), 1286 (2009)Google Scholar
  52. 52.
    G. Crivat, J.W. Taraska, Trends Biotechnol. 30(1), 8 (2012)Google Scholar
  53. 53.
    Q.-L. Zhang, J.-G. Liu, H. Chao, G.-Q. Xue, L.-N. Ji, J. Inorg. Biochem. 83(1), 49 (2001)Google Scholar
  54. 54.
    A. Heydari, H. Mansouri-Torshizi, RSC Adv. 6(98), 96121 (2016)Google Scholar
  55. 55.
    A. Belatik, S. Hotchandani, J. Bariyanga, H.A. Tajmir-Riahi, Eur. J. Med. Chem. 48, 114 (2012)Google Scholar
  56. 56.
    Z. Moradi, M. Khorasani-Motlagh, A.R. Rezvani, M. Noroozifar, J. Biomol. Struct. Dyn. 36(3), 779 (2018)Google Scholar
  57. 57.
    S. Kashanian, M.M. Khodaei, P. Pakravan, DNA Cell Biol. 29(10), 639 (2010)Google Scholar
  58. 58.
    S.M. Ahmadi, G. Dehghan, M.A. Hosseinpourfeizi, J.E.N. Dolatabadi, S. Kashanian, DNA Cell Biol. 30(7), 517 (2011)Google Scholar
  59. 59.
    H. Derakhshankhah, A.A. Saboury, R. Bazl, H.A. Tajmir-Riahi, M. Falahati, D. Ajloo, A.A. Moosavi-Movahedi, J. Iran. Chem. Soc. 9(5), 737 (2012)Google Scholar
  60. 60.
    M. Saeidifar, H. Mansouri-Torshizi, Y. Palizdar, M. Eslami-Moghaddam, A. Divsalar, A.A. Saboury, Acta Chim. Slov. 61(1), 126 (2014)Google Scholar
  61. 61.
    B.H.M. Hussein, J. Lumin. 131(5), 900 (2011)Google Scholar
  62. 62.
    F. Samari, B. Hemmateenejad, M. Shamsipur, M. Rashidi, H. Samouei, Inorg. Chem. 51(6), 3454 (2012)Google Scholar
  63. 63.
    T. Mukherjee, B. Sen, E. Zangrando, G. Hundal, B. Chattopadhyay, P. Chattopadhyay, Inorg. Chim. Acta. 406, 176 (2013)Google Scholar
  64. 64.
    C. Qiao, S. Bi, Y. Sun, D. Song, H. Zhang, W. Zhou, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 70(1), 136 (2008)Google Scholar
  65. 65.
    S. Kashanian, A.T. Ghobadi, DNA Cell Biol. 30(12), 1085 (2011)Google Scholar
  66. 66.
    A.O.F.R. Supercomplexes, J. Biol. Chem. 289(9), 6133 (2014)Google Scholar
  67. 67.
    G. Zhang, X. Hu, N. Zhao, W. Li, L. He, Pestic. Biochem. Physiol. 98(2), 206 (2010)Google Scholar
  68. 68.
    M. Khorasani-Motlagh, M. Noroozifar, A. Moodi, S. Niroomand, J. Photochem. Photobiol. B Biol. 127, 192 (2013)Google Scholar
  69. 69.
    H. Mansouri-Torshizi, S. Zareian-Jahromi, K. Abdi, M. Saeidifar, J. Biomol. Struct. Dyn. no. just-accepted, 1 (2018)Google Scholar
  70. 70.
    N. Raman, J.D. Raja, A. Sakthivel, J. Chem. Sci. 119(4), 303 (2007)Google Scholar
  71. 71.
    I. Wiegand, K. Hilpert, R.E.W. Hancock, Nat. Protoc. 3(2), 163 (2008)Google Scholar
  72. 72.
    V. Reddy, N. Patil, T. Reddy, S.D. Angadi, J. Chem. 5(3), 529 (2008)Google Scholar
  73. 73.
    B.G. Tweedy, Phytopathology 55, 910 (1964)Google Scholar
  74. 74.
    A. Sahraei, H. Kargar, M. Hakimi, M.N. Tahir, J. Mol. Struct. 1149, 576 (2017)Google Scholar
  75. 75.
    K.R.S. Gowda, H.S. Bhojya Naik, B. Vinay Kumar, C.N. Sudhamani, H.V. Sudeep, T.R. Ravikumar Naik, G. Krishnamurthy, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 105, 229 (2013)Google Scholar
  76. 76.
    J. Pusz, E. Ciszkowicz, K. Lecka-Szlachta, S. Wolowiec, E. Woznicka, J. Acta Pol. Pharm. 74(4), 1101 (2017)Google Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Sistan and BaluchestanZahedanIran
  2. 2.Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly

Personalised recommendations